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From the Editor

Welcome to Mathematics Competitions Vol 16, No 1.

A feature of this issue is the inclusion of some further excellent keynote
addresses from the highly successful WFNMC Congress-4 in Melbourne
in 2002.

Again, I would like to thank the Australian Mathematics Trust for its
continued support, without which the journal could not be published,
and in particular Heather Sommariva and Richard Bollard for their
assistance in the preparation of the journal.

Submission of articles:

The journal Mathematics Competitions is interested in receiving articles
dealing with mathematics competitions, not only at national and
international level, but also at regional and primary school level. There
are many readers in different countries interested in these different levels
of competitions.

• The journal traditionally contains many different kinds of articles,
including reports, analyses of competition problems and the
presentation of interesting mathematics arising from competition
problems. Potential authors are encouraged to submit articles of
all kinds.

• To maintain and improve the quality of the journal and its
usefulness to those involved in mathematics competitions, all
articles are subject to review and comment by one or more
competent referees. The precise criteria used will depend on
the type of article, but can be summarised by saying that an
article accepted must be correct and appropriate, the content
accurate and interesting, and, where the focus is mathematical, the
mathematics fresh and well presented. This editorial and refereeing
process is designed to help improve those articles which deserve to
be published.
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At the outset, the most important thing is that if you have anything
to contribute on any aspect of mathematics competitions at any level,
local, regional or national, we would welcome your contribution.

Articles should be submitted in English, with a black and white
photograph and a short profile of the author. Alternatively, the article
can be submitted on an IBM PC compatible disk or a Macintosh disk.
The preferred format is LATEX or TEX, but any text file will be helpful.

Articles, and correspondence, can also be forwarded to the editor by mail
to

The Editor, Mathematics Competitions
Australian Mathematics Trust
University of Canberra ACT 2601
AUSTRALIA

or by email to the address <warrena@amt.canberra.edu.au> or by fax
to the Australian Mathematics Trust office, + 61 2 6201 5052,
(02 6201 5052 within Australia).

Warren Atkins,
June 2003

* * *
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From the President

There are two major items I wish to discuss in this column.

First is an update on ICME-10 in Copenhagen. I did report in the last
issue that it appeared there would be some changes in the treatment
of Competitions at ICME-10. In previous years, Competitions have had
the status of a Topic Group, which allows individual presentations, while
WFNMC has been allocated about 2 hours for its own meetings which
can be run in its own way. I have now been advised by the organisers of
ICME-10 that it is likely that WFNMC and the other Affiliated Study
Groups are likely to be allocated three 1-hour slots at which we can
have our official meeting and election of a new executive to take us
through to 2008, as well as other presentations of our choice. The Topic
Group status of Competitions as a topic of general interest has been
changed to that of a Discussion Group. In fact this will be DG 16 and
Andre Deledicq of Paris and I have been appointed by the International
Programme Committee to co-convene this group.

It is true that as a discussion group there will be no presentation of
individual papers. However this group will be an important forum for
discussion about the issues of Competitions. Andre and I will need to
define some form of framework for discussion, but that discussion will
be quite free. It will be interactive and people with all points of view
will be able to make them during the session.

The IPC is expecting quite strong interest in this group and will
provide strong support. The latest information I have is that they are
planning on providing the group with a 200 seat auditorium and perhaps
some smaller rooms for breakout groups. I strongly urge members to
participate enthusiastically in this group. It will be our only normal
opportunity to get together until 2006 when we have our own conference
in the United Kingdom. With relation to the UK Conference, I am also
able to report that our hosts are at present evaluating two venues, but
I believe it is best for them to give us their own news updates directly
through this journal and I hope that this will commence in the next
edition of this Journal.

Before leaving this topic I had speculated that we might stay in
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Copenhagen for a day or so before or after ICME-10 to allow more time
for us to meet with individual presentations possible. I was planning to
visit Copenhagen in June to organise a venue, but for personal reasons
I have had to call off this visit at the last moment. This is a pity, but
I do believe that we should try to establish this as a tradition at future
ICMEs. It is a practice successfully carried out by similar groups such
as PME.

The other major item I wish to report on is the ICMI Study 16, for which
organisation is now getting under way. Ed Barbeau and I have been
appointed Co-Chairs of this Study, entitled ‘Challenging Mathematics in
and Beyond the Classroom’. It is of course expected that Competitions
and related activities, and their role in the education arena, will be main
topics, but the study is broader than this and will be looking at methods
of challenge beyond the normal interest of WFNMC.

Recently in Toronto, Ed and I met, also with Bernard Hodgson, of
Laval University, Quebec City, and Secretary-General of ICMI, to begin
planning for this study. ICMI has appointed ten other people to form
the International Programme Committee which controls the study. Four
of these ten will be familiar to members of WFNMC, namely Patricia
Fauring (Argentina), Derek Holton (New Zealand), Ali Rejali (Iran) and
Mark Saul (USA). One early feature of the study will be the development
of a discussion document. We are hoping that the IPC will meet in Italy
in late November to discuss and develop this document.

Eventually there will be a Study Conference, limited to about 80
successful applicants who will demonstrate a high level of contribution
and activity. This conference may be held in Brisbane, Australia, in
2006, and from it a book will be published, possibly by Kluwer, which
will be the official findings of the study.

I will ensure that the WFNMC website

www.amt.canberra.edu.au/wfnmc.html

will establish a section on the study and provide up to date information
on its progress. In the meantime, I urge members of WFNMC to take a
vital interest in it, and, if possible, plan to be one of those participants
at the study conference. The Study will have great significance for
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us and articulate the role of competitions and other challenges in the
world of mathematical education in a way we have been hoping for some
considerable time.

Cheers

Peter Taylor
Canberra
June 2003

* * *
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The 50th Anniversary of One Problem:
The Chromatic Number of the Plane

& Its Relatives

Part 11

Alexander Soifer

Alexander Soifer is Professor at the
University of Colorado. He is chair
and founder of the Colorado Math-
ematical Olympiad, now in its nine-
teenth year, a member of USA Math-
ematics Olympiad Subcommittee, Sec-
retary of the World Federation of Na-
tional Mathematics Competitions and
Editor of the Quarterly, Geombina-
torics. Soifer’s publications include
four books, with a fifth currently in
preparation.

1. The Problem

Perhaps, mathematics is at her best, when anyone can understand a
problem, yet nobody could conquer it. Today we will discuss precisely
such a problem. It has withstood all attempts for over 50 years. Here it
is:

What is the smallest number of colors with which we can color
the plane in such a way that no color contains a monochromatic
segment of length 1?

This number is called the chromatic number of the plane and is often
denoted by χ. (The term monochromatic segment simply stands for a
pair of points of the same color.)

1This paper was presented as a keynote address at WFNMC Congress-4,
Melbourne August 2002
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Please note that here we do not necessarily have ‘nice’ maps with
closed regions. We assign one color to every point of the plane without
any restrictions. I do not know who first noticed the following result.
Perhaps, Adam or Eve? To be a bit more serious, I do not think that
ancient Greek geometers, for example, knew this nice fact. They just
did not ask such questions!

Problem 1. (Adam & Eve?). Any 2-colored plane contains a
monochromatic segment of length 1, i.e.,

χ ≥ 3

Solution. Toss on the given 2-colored plane an equilateral triangle T of
side 1 (Figure 1). We have only 2 colors while T has 3 vertices (I trust
you have not forgotten the Pigeonhole Principle). Two of the vertices
must lie on the same color. They are distance 1 apart.

Figure 1

Problem 2. Any 3-colored plane contains a monochromatic segment of
length 1, i.e.,

χ ≥ 4

Solution By the Canadian geometers, brothers Leo and William Moser,
(1961, [30]). Toss on the given 3-colored plane what we now call The
Moser Spindle (Figure 2). Every edge in the spindle has the length 1.

10
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Figure 2. The Moser Spindle

Assume that the seven vertices of the spindle do not contain a
monochromatic segment of length 1. Call the colors used to color the
plane red, white, and blue. The solution now will faithfully follow the
childrens’ song: ‘A B C D E F G...’.

Let the point A be red, then B and C must be one white and one blue,
therefore D is red. Similarly E and F must be one white and one blue,
therefore G is red. We got a monochromatic segment DG of length 1 in
contradiction to our assumption.

Does an upper bound for χ exist? It is not immediately obvious. Can
you find one? It is natural to try a regular tiling — and indeed, one
works!

Problem 3. There is a 7-coloring of the plane that contains no
monochromatic segments of length 1.

χ ≤ 7

Solution ([19]). We can tile the plane by regular hexagons of side 1.
Now we color one hexagon in color 1, and its six neighbors in colors 2,
3,..., 7 (Figure 3). The union of these seven hexagons forms a flower,
a symmetric polygon P of 18 sides. Translates of P (i.e., images of P

11
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under translations) tile the plane and determine how we color the plane
in 7 colors.

Figure 3

It is easy to compute (please, do) that each color does not have
monochromatic segments of any length d, where 2 < d <

√
7.

Thus, if we shrink all linear sizes by a factor of, say, 2.1, we will get a
7-coloring of the plane that has no monochromatic segments of length
1. (Observe: due to the above inequality, we have enough cushion, so
that it does not matter in which of the two adjacent colors we color
boundaries).

In 1982 the Hungarian mathematician Laszlo Szekely found a way to
prove the upper bound without using hexagonal tiling. He used tiling
by squares. Can you think of Laszlo’s proof? You can find it, as well as
an alternative proof of the lower bound, in [39].

It is amazing that pretty easy problems 2 and 3 give us the best known
to mathematics bounds for χ. They were published over 40 years ago
(in fact, they are older than that: see the next section for an historical
account). Still, all we know is that
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χ = 4, or 5, or 6, or 7

A very broad spread! Which do you think it is? Paul Erdós told me
that he was sure χ = 5.

Recently the renowned American geometer Victor Klee shared with me
a very interesting story. In 1980-1981 he lectured in Switzerland. The
celebrated Swiss mathematician Van der Waerden was in attendance.
When Professor Klee presented the state of this problem, Van der
Waerden became very interested. Right there, during the lecture he
started working on the problem. He tried to prove that χ = 7 !

What little time I spent so far working on this problem makes me feel
that χ ≥ 6. Paul Erdös believed that ‘God has a transfinite Book, which
contains all theorems and their best proofs, and if He is well intentioned
toward those, He shows them the Book for a moment’ [10]. If I ever
deserved the honor and had a choice, I would ask to peek at the page
with the chromatic number of the plane. Wouldn’t you!

2. The History

It is natural for one to inquire into the authorship of one’s favorite
problem. And so I turned to tons of articles and books. Some of the
information I found appears here in table 4. Are you confused? I was
too!

As you can see in the table, Douglas Woodall credits Martin Gardner,
who in turn refers to Leo Moser. Hallard Croft calls it ‘a long standing
open problem of Erdös’, while Paul Erdös cannot trace the origin of this
problem’. Later Erdös credits ‘Hadwiger and Nelson’, while Vic Klee
and Stan Wagon write that the problem was ‘posed in 1960-61 by M.
Gardner and Hadwiger’. Croft comes again, this time with Kenneth
Falconer and Richard Guy, to cautiously suggest that the problem is
‘apparently due to E. Nelson [CFG]. Yet, Richard Guy could not tell me
who ‘E. Nelson’ was and why Guy & Co. ‘apparently’ attributed the
problem to him (conversation in a car in Keszthely, Hungary, 1993).

Thus, at least five mathematicians were credited with the problem: Paul
Erdös, Martin Gardner, Hugo Hadwiger, Leo Moser, and Edward Nelson.

13
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What a great group of mathematicians! But it was hard for me to
believe that they all created the problem, even independently. I felt
like a private investigator untangling a web of conflicting accounts. Six
months later I solved the puzzle! I would like to thank a great number of
mathematicians for contributing their part of the puzzle. I am especially
grateful to Paul Erdös, Victor Klee, Martin Gardner, Edward Nelson and
John Isbell. Only their accounts, recollections and congeniality made
these findings possible.

Publication Year Author(s) Problem Creator(s) or
Source Named

[15] 1960 Gardner ‘Leo Moser ...writes...’

[19] 1961 Hadwiger Nelson
(after Klee)

[5] 1961 Erdös ‘I cannot trace the origin
of this problem’

[11] 1967 Croft ‘A long standing open
problem of Erdös’

[40] 1973 Woodall Gardner

[7], [8], [9] 1980-1981 Erdös Hadwiger and Nelson

[2] 1991 Croft, Falconer ‘Apparently due to
and Guy E. Nelson’

[29] 1991 Klee and Wagon ‘Posed in 1960-61 by
M. Gardner and Hadwiger’

Table 4. Who created Chromatic Number of the Plane Problem?

The problem creator was born on May 4, 1932 (a good number: 5/4/32),
in Decatur, Georgia. The son of the secretary of the Italian YMCA,
Joseph Edward Nelson had studied at a liceo (Italian prep school) in
Rome. In 1949 Ed had returned to the U.S. and entered the University
of Chicago. The visionary President of the University, Robert Hutchins,
allowed students to avoid ‘doing time’ at the University by passing
lengthy placement exams. Ed Nelson had done so well that he was
allowed to go right on to a Master’s program without working on his
Bachelor’s.

Time magazine reported young Nelson’s fine achievements in 14 (!)
exams on December 26, 1949, next to the report on completion of the
last war-crimes trials of World War II (Field Marshal Fritz Erich von
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Manstein received 18 years in prison), assurances by General Dwight D.
Eisenhower that he would not be a candidate in the 1952 Presidential
election (he certainly was), and a promise to announce Time’s ‘A Man
of the Half-Century’ in the next issue. (Consequently Time’s choice was
Winston Churchill.)

The following fall the 18-year-old Edward Nelson created what he called
‘a second four-color problem’ (from his October 5, 1991, letter [32] to
me):

‘Dear Professor Soifer:

In the autumn of 1950, I was a student at the University of
Chicago and among other things was interested in the four-
color problem, the problem of coloring graphs topologically
embedded in the plane. These graphs are visualizable as nodes
connected by wires. I asked myself whether a sufficiently rich
class of such graphs might possibly be subgraphs of one big
graph whose coloring could be established once and for all, for
example, the graph of all points in the plane with the relation
of being unit distance apart (so that the wires become rigid,
straight, of the same length, but may cross). The idea did not
hold up, but the other problem was interesting in its own right
and I mentioned it to several people.’

One of these people was John Isbell. He still remembers it very vividly
(from his August 26, 1991, letter [26] to me):

‘...Ed Nelson told me the problem and χ ≥ 4 in November
1950, unless it was October—we met in October. I said what
upper bound have you, he said none, and I worked out 7. I was
a senior at the time (B.S., 1951). I think Ed had just entered U.
Chicago as a nominal sophomore and taken placement exams
which placed him a bit ahead of me, say a beginning graduate
student with a gap or two in his background. I certainly
mentioned the problem to other people between 1950 and
1957; Hugh Spencer Everett III, the author of the many-worlds
interpretation of quantum mechanics, would certainly be one,
and Elmer Julian Brody who did a doctorate under Fox and
has long been at the Chinese University of Hong Kong and is
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said to be into classical Chinese literature would be another. I
mentioned it to Vic Klee in 1958 ±1...”

Victor Klee too remembers (our phone conversation, 1991) hearing the
problem from John Isbell in 1957-1958. In fact, it took place before
September 1958 when Professor Klee left for Europe. There he passed
it to Hugo Hadwiger who was collecting problems for the book Open
Problems in Intuitive Geometry to be written jointly by Erdös, Fejes-
Toth, Hadwiger, and Klee (this great book-to-be has never materialized).

What are the roles of Paul Erdös, Martin Gardner, and Leo Moser in
our story of the problem? The only question I am leaving for others to
answer is how and when Leo Moser came by the problem. Apparently he
did not create it independently from Edward Nelson (Paul Erdös’ July
16, 1991, letter [12] to me):

‘I do not remember whether Moser in 1958 told me how he
heard the problem on the chromatic number of the plane, I
only remember that it was not his problem.’

Yet, Leo Moser made a valuable contribution to the survival of this
problem. He gave it to both Paul Erdös and Martin Gardner.
Martin Gardner, due to his impeccable taste, recognized the value of
this problem and included it in his ‘Mathematical Games’ column in
Scientific American ([16]), with the acknowledgement that he received
it from Leo Moser of the University of Alberta. Thus, the credit for the
first publication of the problem goes to Martin Gardner. It is beyond
me why so many authors of articles and books, as old as 1973 and as
recent as 1991, give the credit for the creation of the problem to Martin
Gardner, something he himself has never claimed. (In our 1991 phone
conversation Martin told me for a fact that the problem was not his, and
he promptly listed Leo Moser as his source.)

Moreover, some authors (Victor Klee and Stanley Wagon, for example)
who knew of Nelson, still credited Gardner and Hadwiger because they
would accept only written, preferably published word. Following this
logic, the creation of the celebrated Four-Color Map Coloring Problem
must be attributed to Augustus De Morgan (who first wrote about it in
his 1852 letter), or better yet to Arthur Cayley (whose abstract was first
publication on the problem). Yet we all seem to agree that the twenty-
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year-old Francis Guthrie created this problem, even though he did not
publish a word about it!

Of course, a lone self-serving statement would be too weak a foundation
for a historical claim. On the other hand, independent selfless
testimonies supporting each other comprise as solid a foundation for
a historical claim as any publication. And this is precisely what my
inquiry has produced. Here is just one example of Nelson and Isbell’s
selflessness. Edward Nelson wrote to me on August 23, 1991 [31]:

‘I proved nothing at all about the problem . . .’

John Isbell corrected Nelson in his September 3, 1991, letter [Isb2] to
me:

‘Ed Nelson’s statement which you quote, ‘I proved nothing at
all about the problem,’ can come only from a failure of memory.
He proved to me that the number we are talking about is *
4, by precisely the argument in Hadwiger 1961. Hadwiger’s
attribution (on Klee’s authority) of that inequality to me can
only be Hadwiger’s or Klee’s mistake.”

This brings us to the issue of authorship of two inequalities

4 ≤ χ ≤ 7

Once again the entire literature is off the mark by giving credit for first
proofs to Hadwiger and the Mosers. Yes, in 1961 the famous Swiss
geometer Hugo Hadwiger published ([19]) the chromatic number of the
plane problem together with proofs of both inequalities. But he writes
(and nobody reads!):

‘We thank Mr. V. L. Klee (Seattle, USA) for the following
information. The problem is due to E. Nelson; the inequalities
are due to J. Isbell.’

Hadwiger does go on to say: ‘some years ago the author (i.e., Hadwiger)
discussed with P. Erdös questions of this kind.’ Does he mean that
he thought of the problem independently from Nelson? We will never
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find out for sure, but I have my doubts. Hadwiger jointly with H.
Debrunner published an excellent, long problem paper in 1955 [18]
that was extended to their wonderful book in 1959 [19]; see also the
1964 English translation [23] with Victor Klee, and the 1965 Russian
translation [22] edited by Isaac Yaglom. All these books (and Hadwiger’s
other papers) include a number of ‘questions of this kind’, but do not
include the chromatic number of the plane problem. Also, it seems to me
that the problem in question is somewhat out of Hadwiger’s ‘character’:
in all similar problems he prefers to consider closed rather than arbitrary
sets.

I shared my doubts about Hadwiger independently creating the problem
with Paul Erdös. It was especially important because Hadwiger
mentioned Erdös as his witness of sorts (please, see the previous
paragraph). Paul replied (Erdös July 16, 1991, letter [12] to me) as
follows:

‘I met Hadwiger only after 1950, thus I think Nelson has
priority (Hadwiger died a few years ago, thus I cannot ask
him, but I think the evidence is convincing).’

During his talk at 25th South Eastern International Conference On
Combinatorics, Computing and Graph Theory in Boca Raton, Florida
at 9:30-10:30 AM on March 10, 1994, Paul summarized the results of my
research in uniquely Erdösian style:

‘There is a mathematician called Nelson who in 1950 when
he was an epsilon, that is he was 18, discovered the following
question. Suppose you join two points in the plane whose
distance is 1. It is an infinite graph. What is chromatic
number of this graph? Now, de Bruijn and I showed that if
an infinite graph which is chromatic number k, it always has a
finite subgraph, which is chromatic number k. So this problem
is really [a] finite problem, not an infinite problem. And it was
not difficult to prove that the chromatic number of the plane
is between 4 and 7. I would bet it is bigger than 4, but I am
not sure2. And the problem is still open. If it would be my

2In 1980 Paul was more positive [7]: ‘I am sure that a2 > 4, but cannot prove it.’
(a2 here stands for the chromatic number of the plane)
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problem, I would certainly offer money for it. You know, I
can’t offer money for every nice problem because I would go
broke, immediately. I was asked once what would happen if all
your problems would be solved, could you pay? Perhaps, not,
but it doesn’t matter. What would happen to the strongest
bank if all the people who have money there would ask for
money back? Or what would happen to the strongest country
if they suddenly ask for money? Even Japan or Switzerland
would go broke. You see, Hungary would collapse instantly.
Even the United States would go broke immediately. [snip]
Actually it was often attributed to me, this problem. It is
certain that I had nothing to do with the problem. I first
learned the problem, the chromatic number of the plane, in
1958, in the winter, when I was visiting [Leo] Moser. He did
not tell me from where this nor the other problems came. It
was also attributed to Hadwiger but Soifer’s careful research
showed that the problem is really due to Nelson.’

The two famous Canadian problem people, the brothers Leo and William
Moser, also published in 1961 [30] the proof of the lower bound 4 ≤ χ
while solving a different problem. Although in my opinion, these two
proofs are not distinct, the Mosers’ emphasis on a finite set, now called
the Moser Spindle, proved to be very productive.

Now we can finally give a due credit to Edward Nelson for being first
in 1950 to prove the lower bound 4 ≤ χ. Because of this bound, John
Isbell recalls in his letter [26] to me, Nelson ‘liked calling it a second
Four-Color Problem!’

Professor Edward Nelson is now on the faculty at Princeton University;
his main area of interest is analysis. A few years ago he was elected into
the National Academy of Sciences.

John Isbell was first in 1950 to prove the upper bound χ ≤ 7. He used the
same hexagonal 7-coloring of the plane that Hadwiger published in 1961
[19]. Please note that Hadwiger first used the same coloring in 1945 [18],
but for a different problem: his goal was to show that there are seven
congruent closed sets that cover the plane (he also proved there that no
five congruent closed sets cover the plane). Professor John Isbell is on
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the faculty at the State University of New York at Buffalo.

Paul Erdös’ contribution to the history of this problem is two-fold. First
of all, as Augustus De Morgan did for the Four-Color Problem, Erdös
kept the flame of the problem lit. He made the chromatic number of the
plane problem well known by posing it in his countless problem talks
and many publications, for example [5], [6], [7], [9], [8] and [14].

Secondly, Paul Erdös created a good number of fabulous related
problems. We will discuss one of them in the following section.

2. Polychromatic Number of the Plane

When a great problem withstands all assaults, mathematicians create
many related problems. It gives them something to solve. Sometimes
there is a real gain in this process, when an insight into a related problem
brings new ways to conquer the original one. Numerous problems were
posed around the chromatic number of the plane. I would like to share
with you my favorite among them.

It is convenient to say that a colored set S realizes distance d if S contains
a monochromatic segment of length d.

Our knowledge about this problem starts with the celebrated 1959 book
by Hugo Hadwiger ([21], and consequently its translations [22] and [23]).
Hadwiger reported in the book that he had received a 9/9/1958 letter
from the Hungarian mathematician A. Heppes:

‘Following an initiative by P. Erdös he [i.e. Heppes] considers
decompositions of the space into disjoint sets rather than closed
sets. For example, we can ask whether proposition 59 remains
true in the case where the plane is decomposed into three
disjoint subsets. As we know, this is still unresolved.’

In other words, Paul Erdös asked whether it was true that if the plane
is partitioned into three disjoint subsets, one of the subsets must realize
all distances. Soon the problem took on its current ‘appearance.’ Here
it is:

What is the smallest number of colors for coloring the plane in such a
way that no color realizes all distances?
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This number had to have a name, and so in 1992 [35] I named it the
polychromatic number of the plane and denoted it by χp. The name and
the notation seemed so natural, that by now it has become a standard,
and has appeared in such important books as [28] and [17].

Since I viewed this to be a very important open problem, I asked Paul
Erdös to verify his authorship, suggested in passing by Hadwiger. As
always, Paul was honest and unassuming in his July 16, 1991 letter to
me [12]:

‘I am not even quite sure that I created the problem: Find
the smallest number of colors for the plane, so that no color
realizes all distances, but if there is no evidence contradicting
it we can assume it for the moment.’

In the chromatic number problem we were looking for colorings of the
plane such that each color does not realize the distance 1. In the
polychromatic number problem we are coloring the plane in such a way
that each color i does not realize a distance di. For distinct colors i and
j, the corresponding non-realizable distances di and dj may (but do not
have to) be distinct. Of course,

χp ≤ χ.

Due to problem 3,
χp ≤ 7.

Nothing else was discovered during the first 12 years of this problem.
Then in 1970, Dmitry E. Raiskii from the Moscow High School (!) for
Working Youth #105 published ([33]) the lower and upper bounds for
χm:

Problem 4. ([33]).
4 ≤ χp ≤ 6.

The example proving the upper bound was found by S. B. Stechkin and
published with his permission by D. E. Raiskii in [33].
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Incidentally, Stechkin has never gotten a credit in the West for his
example. Numerous articles and books I have read give the credit to
Raiskii (except for Raiskii himself!). Why did it happen? As everyone
else, I read the English translation of Raiskii’s paper [33]. It said:

‘S. B. Stechkin noted that the plane can be decomposed into
six sets such that all distances are not realized in any one of
them. A corresponding example is presented here with the
author’s solution.’

Author of what? – I was wondering. Author of the paper (as everyone
decided)? But there is very little need for a ‘solution’ once the example
is found. A criminalistic instinct overcame me. I ordered a copy of the
original Russian text. I read it in disbelief:

‘A corresponding example is presented here with the author’s
permission.’

Stechkin permitted Raiskii to publish Stechkin’s example! The
translator mixed up somewhat similarly looking Russian words and
‘innocently’ created a myth:

Russian word English translaion
RE XENIE solution

RAZRE XENIE permission

Table 5. Translator’s Folly.

Three years later, in 1973 the British mathematician D. R. Woodall
published one of the best to date papers [40] on problems related to the
chromatic number of the plane. Among other things, he gave his own
proofs of the inequalities of problem 4. I prefer the lower bound proof by
Woodall and the upper bound example by S. B. Stechkin. Let us look
at them.

The Woodall proof is based on a triple use of two ideas of Hugo Hadwiger
([23], Problem 54 and 59). I do not like to use the word ‘lemma’, it is
Greek to me. Especially since there is an appropriate English word ‘tool’.
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Tool 4. Let a circle C of diameter d be colored white and blue. If the
white color does not realize the distance dw, (dw ≤ d), and the blue
color does not realize db (db ≤ d), then C has no monochromatic chord
of length dw.

Solution. The circle C certainly does not have a white monochromatic
chord of length dw, (dw is not realized by the white color). Assume
that C contains a blue monochromatic chord XY of length dw. Let us
rotate XY about the center of C to its new position X ′Y ′, such that
|XX ′| = db (Figure 6).

Figure 6

Since X ′ and Y ′ may not be both white (or XY ′ would be a white
monochromatic chord of length dw), at least one of the chords XX ′,
Y Y ′ of length db is a blue monochromatic chord. A contradiction to the
blue color not realizing the distance db.

Tool 5. Let the plane be colored red, white, and blue, and each color
does not realize a distance, respectively dr, dw, db; dr ≤ dw ≤ db.
Then the plane has no segment of length drb with one red and one blue
endpoints, where

drb =

√
d2

b −
(

1
2
dr

)2

+
√

3
2

dr.
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Solution. Let RB be a segment of length drb with one endpoint R red,
and the other endpoint B blue. We draw a circle C of radius db with
center in B, and an equilateral triangle T of side dr with one vertex in
R and an altitude on the segment RB, (Figure 7). It is easy to verify
(do) that the other two vertices R1 and R2 of T lie on the circle C (in
fact, the distance drb was chosen for that purpose).

Figure 7

Since the plane has no blue monochromatic segment of length db and
the center B of the circle C is blue, the entire circle C is colored red
and white. Due to tool 4, C has no monochromatic chord of length dr.
Therefore, one of the end-points of the chord R1R2 is red. Thus, two
of the vertices of the equilateral triangle RR1R2 of side dr are red in
contradiction to the red color not realizing the distance dr.

Now that you have proved tools 4 and 5, we are ready to prove the lower
bound inequality.

Problem 6. (D.E. Raiskii [33], D.R. Woodall [40]).

χm ≥ 4

i.e., in any 3-colored plane at least one of the colors realizes all distances.
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Solution by D. R. Woodall. Assume the plane is colored red, white, and
blue, and in contradiction to the problem statement each color does not
realize a distance, respectively dr, dw, db; dr ≤ dw ≤ db. We can assume
without loss of generality that each color is present (if a color is not
present, just pick one point and repaint it into this color). We define d
as follows (drb is defined in tool 5):

d =

√
d2

rb −
(

1
2
dw

)2

+
√

3
2

dw.

Let us prove that if one endpoint of a segment of length d is white, then
the other endpoint is white as well.

Indeed, let BW be a segment of length d with one endpoint B blue and
the other W white. We draw a circle C of radius drb with the center in
B and an equilateral triangle T of side dw with one vertex in W and an
altitude on the segment BW (Figure 8). It is easy to check (do!) that
the other two vertices W1 and W2 of the triangle T lie on the circle C
(in fact, the distance d was chosen to guarantee exactly that!).

Due to tool 5, the plane has no segment of length drb with one red and
one blue endpoint. Therefore, the circle C has no red points (its center
B is blue). Thus, C is colored white and blue. By tool 4, any chord of C
of length dw has one white endpoint. It means that W1 or W2 is white,
i.e., two vertices of the equilateral triangle WW1W2 of side dw are white
in contradiction to the white color not realizing the distance dw.

Similarly, we can show that a segment RW of length d with one endpoint
R red and the other W white may not exist in the plane. (Just construct
a picture like Figure 8, except the center of the circle will be in red R.)

Thus, we proved that a circle of radius d with center in a white point
must be completely white. But this means that the entire plane is white.
This contradiction completes the proof.
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Figure 8

Problem 7. (S. B. Stechkin, [33]).

χ ≤ 6

i.e., there is a 6-coloring of the plane such that no color realizes all
distances.

Solution by S. B. Stechkin, presented by D. E. Raiskii in [33]. The unit
of construction is a parallelogram that consists of four regular hexagons
and eight equilateral triangles, all of side length 1 (Figure 9). We color
the hexagons in colors 1, 2, 3, and 4. There are two types of triangles:
to a triangle with a vertex below its horizontal base we assign the color
5, and to a triangle with a vertex above the base we assign the color 6.
While coloring, we consider every hexagon to include its entire bound-
ary except its one rightmost and two lowest vertices, and every triangle
does not include any of its boundary points.

Now we can tile the entire plane with translations of the unit
parallelogram. We are done.
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Figure 9

A simple construction solved problem 7. Simple, after it is found. The
trick was to find it, and S. B. Stechkin found it first. Christopher
Columbus too ‘just ran into’ America! I got hooked. I found myself
thinking about six-coloring of the plane. I felt that if our ultimate goal
was to find the chromatic number of the plane χ or to at least improve
the known bounds (4 ≤ χ ≤ 7), it may be worthwhile to somehow
evaluate how close a coloring of the plane is to achieving that. In 1992
I introduced such a measurement.

Definition 8. (A. Soifer [36]). Given an n−coloring of the plane such
that the color i does not realize the distance di (1 ≤ i ≤ n). Then we
would say that this coloring has type (d1, d2, . . . dn).

It would be a great improvement in the chromatic number problem to
find a 6-coloring of type (1,1,1,1,1,1), or to show that one does not exist.
With the appropriate choice of a unit, we can make the 1970 Stechkin

coloring to have type (1, 1, 1, 1,
1
2
,
1
2
). D. R. Woodall [40] reached his goal

of finding a closed 6-coloring of the plane with all distances not realized
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by any color. His example, however, had three ‘missing distances.’ It

had type (1, 1, 1,
1√
3
,

1√
3
,

1
2
√

3
).

In a search for a ‘good’ coloring, I looked at a tiling with regular octagons
and squares that I saw in many Russian public toilets (Figure 10).

Figure 10

But it didn’t work! See it for yourself:

Problem 9. Prove that the set of all squares in the tiling of figure 10
(even without their boundaries) realizes all distances.

I decided to shrink the squares until their diagonal became equal to the
distance between two closest squares. Simultaneously (!) the diagonal
of the now non-regular octagon became equal to the distance between
the two octagons marked with 1 in Figure 10. I was in business!

Problem 10. (A. Soifer [36]). There is a 6-coloring of the plane of type

(1,1,1,1,1,
1√
5

).

Solution. We start with two squares, one of side 2 and the other of
diagonal 1 (Figure 11). We can use them to tile the plane with squares
and (non-regular) octagons (Figure 13). Colors 1, ..., 5 will consist of
octagons; we will color all squares in color 6. With each octagon and
each square we include half of its boundary (bold lines in Figure 12)
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without the endpoints of that half. It is easy to verify (please do!) that√
5 is not realized by any of the colors 1, ..., 5; and 1 is not realized

by the color 6. By shrinking all linear sizes by a factor of
√

5, we get a

6-coloring of type (1, 1, 1, 1, 1,
1√
5
).

Figure 11 Figure 12

Figure 13

I had mixed feelings when I obtained the result of problem 10 in August
1992. On the one hand, I knew the result was ‘close but no cigar’:
after all, a 6-coloring of type (1,1,1,1,1,1) has not been found. On the
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other hand, I began to feel that the latter 6-coloring probably did not
exist, and if so, my 6-coloring was the best possible. There was another
consideration as well. While in a Ph.D. program in Moscow I hoped
to produce the longest paper that would still be refereed in by a major
journal (and I got one published in 1973 that, in manuscript, was 56
pages long). This time I was concerned with a ‘dual record’: how short
can a paper be and still contain enough to be refereed in and published?
The paper solving problem 10 was 1.5 pages long, plus a page of pictures.
It was refereed within one day [36]. It also gave birth to a new open
problem.

Definition 11. (A. Soifer [24]). Almost chromatic number χa of the
plane is the minimal number of colors that are required for coloring the
plane so that almost all (i.e., all but one) colors forbid unit distance, and
the remaining color forbids a distance.

We have the following inequalities for χa:

4 ≤ χa ≤ 6

The lower bound follows from Dmitry Raiskii’s [33]. I proved the upper
bound in problem 10 above [36]. And the problem is:

Open Problem 12. (A. Soifer [24]). Find χa.

4. Continuum of 6–colorings

In 1993 another 6-coloring was found by Ilya Hoffman and the author
([24], [25]). It’s type was (1,1,1,1,1,1,

√
2−1). The story of this discovery

is noteworthy. In the summer 1993 I was visiting my Moscow cousin, a
well-known New Vienna School composer Leonid Hoffman. His 15-year
old son Ilya studied violin at the Gnesin’s Music High School. Ilya set
out to find what I was doing in math, and did not accept any general
answers. He wanted particulars. I showed him my 6-coloring (problem
10). Ilya got busy. The next day he showed me . . . the Stechkin
coloring that he discovered on his own! Shortly he came up with a idea
of using a 2-square tiling. Ilya had an intuition of a virtuoso fiddler and
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no mathematical culture—I figured out what sizes squares must have for
the 6-coloring to do the job we needed. And the joint work of an unusual
mathematician-musician pair was born.

Problem 13. (I. Hoffman and A. Soifer [24], [25]). There is a 6-coloring
of the plane of type (1,1,1,1,1,

√
2 − 1)

Figure 14

Figure 15

Solution. We tile the plane with squares of diagonals 1 and
√

2 − 1
(Figure 14). We use colors 1,...,5 for larger squares, and color 6 for all
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smaller squares. With each square we include half of its boundary, the
left and lower sides, without the endpoints of this half (Figure 15).

The two examples of problems 10 and 13 suggest the following open
problem.

Open Problem 14. (A. Soifer [37], [38]). Find the 6-realizable set X6

of all positive numbers α such that there exists a 6-coloring of the plane
of type (1,1,1,1,1, α).

In this new language, problems 10 and 13 can be written as follows:

1√
5

.
√

2 − 1 ∈ X6

What do 6-colorings of problems 10 and 13 have in common? It is
not obvious, is it? After a while I realized that they are two extreme
examples of a general case, and a much better result, in fact, was possible.

Theorem 15. (A. Soifer [38]).
[√

2 − 1,
1√
5

]
⊆ X6

i.e. for every α ∈
[√

2 − 1,
1√
5

]
there is a 6-coloring of type (1,1,1,1,1,1,

α).

Proof. Let us look at the following tiling of the plane (Figure 16). It is
generated by a large square and a small square with the angle C between
them (Figure 18). We are ready to color the tiling in Figure 1 in 6 colors.
Denote by â the figure bounded by a bold line. Use colors 1 through 5 for
octagons inside â and color 6 for all small squares. Include in the colors
of octagons and squares the part of their boundaries that is indicated
in bold in Figure 17. We wish to guarantee that each color forbids a
distance.

Let the side length of the large square be 1, and the segments of adjacent
sides of large square inside the small square be denoted by x and y, x ≤ y
(Figure 18). It is easy to see (Figure 19), that the extensions of sides of
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the four large squares around one small square cut the latter into four
congruent right triangles with sides x and y and a square of side y − x.

The conditions for each color to forbid a distance produce the following
system of two inequalities (Figure 20):

{
d1 ≥ d2

d3 ≥ d4

Figures 19 and 20 allow an easy representation of all di, (i = 1, 2, 3, 4) in
terms of x and y. As a result, we get the following system of inequalities:

√
(1 + y − x)2 + (2x)2 ≥

√
1 + (1 − 2x)2

1 − x − y ≥
√

2(x2 + y2)

}

33



 

d2 
d2 

 d3 

 d4 

Figure 20 

Mathematics Competitions Vol 16 No 1 2003

Solving for x each of these two inequalities separately, we get a unique
solution for x as a function of y that satisfies both of the above
inequalities:

x =
√

2 − 4y + y − 1 where 0 ≤ y ≤ 0.5 (1)

Since 0 ≤ x ≤ y, we get narrower bounds for y : 0.25 ≤ y ≤
√

2− 1. For
any value of y within these bounds, x is uniquely determined by (1) and
accompanied by equalities d1 = d2 and d3 = d4.

We showed above that for every y ∈
[
0.25,

√
2 − 1

]
there is a 6-coloring

of type (1,1,1,1,1, α), but what values can α have? Surely, α =
d4

d2
. By

making a substitution Y =
√

2 − 4y, where Y ∈
[
0.25,

√
2 − 1

]
, we get

α2 =
Y 4 − 4Y 3 + 8Y 2 − 8Y + 4

Y 4 − 8Y 3 + 24Y 2 − 32Y + 20

By substituting Z = Y − 2, where Z ∈
[
−
√

2,−1
]
, we get:

α2 = 1 +
4Z(Z2 + 2Z + 2)

Z2 + 4
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To observe the behavior of the function α2, we compute its derivative:

(α2)′ = − 4
(Z4 + 4)2

(Z6 + 4Z5 + 6Z4 − 12Z2 − 16Z − 8)

We are positively lucky, for this sixth degree polynomial can be
decomposed:

(α2)′ = − 4
(Z4 + 4)2

(Z2 − 2)
[
(Z + 1)4 + 2(Z + 1)2 + 1

]

Hence, on the segment of our interest Z ∈
[
−
√

2,−1
]
, the extremum

of α2 occurs when Z = −
√

2. Going back from Z to Y to y, we see
that on the segment y ∈

[
0.25,

√
2 − 1

]
the function α = α(y) increases

from α =
√

2 − 1 = 0.41421356 (i.e. 6-coloring of problem 13) to

α =
1√
5

= 0.44721360 (i.e., 6-coloring of problem 10). Since the function

α = α(y) is continuous and increasing on
[
0.25,

√
2 − 1

]
, it takes on each

intermediate value from the segment
[√

2 − 1,
1√
5

]
, and only once.

For every angle C between the small and the large squares (see figure
18), there are, unique, sizes of the two squares, such that the constructed
6-coloring has type (1,1,1,1,1, α) for a uniquely determined α.

Remark: the problem of finding the 6-realizable set X6 has a close
relationship with the problem of finding the chromatic number of the
plane χ. Its solution would shed light if not solve the chromatic number
of the plane problem:

if 1 �∈ X6, then χ = 7
if 1 ∈ X6, then χ ≤ 6

Open Problem 16. (A. Soifer [39]). Find X6.

I am sure you understand that this short problem is extremely difficult.

35



Mathematics Competitions Vol 16 No 1 2003

5. The Art of Coloring: Ode to Bees

I have one tiny regret. Hadwiger-Isbell’s, Stechkin’s and my ornaments
(Figures, 9, and 13 respectively) delivered nothing new to the world of
art. Artists of China, India, Persia, Turkey, and Europe have known
our ornaments for over 1,000 years. Figures 21, 22, and 23 reproduced
with the kind permission of the Harvard-Yenching Institute from the
wonderful 1937 book A Grammar of Chinese Lattice by Daniel Sheets
Dye ([4]), show how those ornaments were implemented in an old Chinese
lattice.

But even our ancestors did not invent the honeycomb (Figure 21). Bees
were first. (Three cheers to the bees!).

Figure 21
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Figure 22

Figure 23
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6. Epilogue

‘If I live, I hope to preach next year. If I don’t, I hope that somebody
will lecture in my memory.’ These were the last words of Paul Erdös’s
talk on March 10, 1994 in Boca Raton [14].

On March 13, 2003 we will celebrate the 90th anniversary of Paul Erdös’
birthday. Paul created enough great open problems to last for centuries.
Chromatic number of the plane was not his problem, but he liked it a
lot. And he has single-handedly kept this problem alive. This talk and
this paper are dedicated to the memory of Paul.
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Colourings of 3-space using
Lattice/Sublattice Schemes

Part 21

David Coulson is a lecturer in the
School of Mathematics and Statistics at
the University of Melbourne. He stud-
ied mathematics and computer science
and gained a Ph D with the topic ‘The
quantising properties of two, six dimen-
sional dual-extreme lattices.’ His inter-
ests include: the chromatic number of
3-space with lattice/sublattice colour-
ings; the chromatic number of 2-space
with convex polygonal colourings.

1. The problem.

• What is the smallest number of colours needed to colour every
point of n-space so that no two points distance 1 apart have the
same colour? (We say 1 is an excluded distance.)

• What colourings use this number of colours?

• (Clearly we can dilate space so any excluded distances suffice.)

2. Colourings – the Lattice/Sublattice colouring scheme.

The Scheme:

• Take a lattice Λ and use it to tessellate space into nearest neighbour
regions (NNRs).

• Colour these tiles according to cosets of a sublattice Γ of Λ.

1This paper was presented as a keynote address at WFNMC Congress-4,
Melbourne August 2002
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– So that different tiles of the same colour are at least the
diameter of a tile apart.

– Look for a sublattice (a subset of a lattice that is itself a
lattice) of low index for an efficient colouring.

For example the 7 colouring of the plane based on the Hexagonal Lattice
(the black dots) is constructed using NNRs (hexagons) and a hexagonal
sublattice of index 7 (black dots labelled 0).
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3. In 3-space. . .

In the early 1990s the most efficient known colouring of 3-space used
21 colours and was based on the Face Centred Cubic Lattice FCC-L
(alternatively known as D3 or A3). The FCC-L has basis (over the
integers) (1, 1, 0), (1,−1, 0), (1, 0, 1) and consists of all vectors with
integer coordinates and even parity.

The FCC-L is the most efficient packing lattice in 3 dimensions, meaning
that if you had many identical spheres and had to arrange their centres
on a lattice the FCC-L is the arrangement that will pack them in as
tightly as possible.

In fact Thomas Hales [5] has (purportedly) shown recently that this is
the most efficient sphere packing possible regardless of the arrangement
of centres (that is, no tighter packing exists) – solving the Kepler
Conjecture.

It is the packing arrangement often seen at greengrocers, where the
horizontal layers are arranged in square grids, and these horizontal layers
are stacked so that oranges in neighbouring horizontal layers sit in the
gap between 4 oranges.

The FCC-L close packing.
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4. The 21 colouring of 3-space.

For the 21-colouring of 3-space, the sublattice Γ of FCC-L used to colour
the NNRs has basis (1,2,3), (-3,1,-2), (-1,-3,2) where

(1,2,3) = 0(1,1,0) -2(1,-1,0) +3(1,0,1),
(-3,1,-2) = 0(1,1,0) -1(1,-1,0) -2(1,0,1),
(-1,-3,2) = -3(1,1,0) +0(1,-1,0) +2(1,0,1)

giving the index of Γ in FCC-L as

∣∣∣∣∣∣
0 −2 3
0 −1 −2

−3 0 2

∣∣∣∣∣∣ = 21.

We require the NNRs that are coloured the same to be greater than the
covering diameter D (= 2) apart.

NNRs centred on (0, 0, 0) and any permutation of (1, 2, 3) (which includes
all the shortest non-zero vectors in Γ) are distance

√
14/3 (> 2) apart.

The next shortest non-zero vectors in Γ have length
√

20 and so the
NNRs are at least

√
20 − 2 × 1 > 2 apart. So we have an excluded

distance a little greater than 2. In fact the range of excluded distances

is (2,
√

14
3 ) = (D,

√
7
6D) ≈ (D, 1.08D).

5. An 18 colouring of 3-space.

For an 18 colouring of 3-space [3], the sublattice Γ of the BCC-L used
to colour the NNRs has basis (8,0,4), (4,8,0), (0,4,8) where

(8,0,4) = 1(-2,2,2) +3(2,-2,2) +2(2,2,-2),
(4,8,0) = 2(-2,2,2) +1(2,-2,2) +3(2,2,-2),
(0,4,8) = 3(-2,2,2) +2(2,-2,2) +1(2,2,-2).

giving the index of Γ in BCC-L as∣∣∣∣∣∣
1 3 2
2 1 3
3 2 1

∣∣∣∣∣∣ = 18.
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Let us check that the NNRs are at least a covering diameter apart. NNRs
centred on (0, 0, 0) and the nearest vectors of Γ, for example (8, 0, 4) are
exactly a covering diameter apart (as (8, 0, 4) = 4× (2, 0, 1) with (2,0,1)
being a vertex of the NNR of the BCC-L) and we exclude the distance
D (the covering diameter) from the colouring by colouring diametrically
opposite vertices of the NNR different colours. Note that D is the only
excluded distance.

By perturbating the lattice Γ (see section 8) and as a result the tes-
sellating lattice BCC-L, we can find a tessellating lattice Λ with basis
(1, 4,−2), (−2, 1, 4), (4,−2, 1) and sublattice Γ with basis (9, 9, 0), (0, 9, 9),
(9, 0, 9) (which is isomorphic to 9 × FCC-L) the covering diameter D is√

113
3 and NNRs coloured according to Γ are distance

√
131
3 apart. So

(D,
√

131
113D) ≈ (D, 1.077D) is a range of excluded distances.

6. Can we do better?
— The 15 colouring of 3-space.

If balloons were packed according to the FCC-L and then inflated
(uniformly) so that no gaps existed in between them, each would be
shaped as the NNR with 12 rhombic faces, shown below.
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The NNR of FCC-L has inradius (packing radius) r =
√

2
2 and covering

radius R = 1.

The optimal packing properties of FCC-L can be expressed algebraically
as the NNR of FCC-L, NFFC say, which satisfies

Volume(NFFC)/r3 = 4
√

2

= min
P∈SF

Volume(P )/r3

where SF is the set of polyhedra that fill 3-space (under translations)
and r is the radius of the largest sphere that can fit inside the polyhedron
P.

That is the inradius r is as large as possible for a given volume amongst
space filling polytopes.

For the colouring problem we really want a tiling polyhedron (NNR)
that has a small diameter D = 2 ×R for a given volume, if we restrict
our polyhedra to be the NNRs of lattices we are essentially asking for the
best covering lattice (the lattice arrangement of centres of overlapping
spheres that cover all of 3-space with minimal total volume).

The best covering lattice is known in 3-space to be the body centred
cubic lattice BCC-L [1] which has basis (−2, 2, 2), (2,−2, 2), (2, 2,−2)
and can be thought of as the union of (4Z)3, the cubic lattice (with side
length 4) with the centres of these cubes, that is

BCC-L = (4Z)3 ∪ ((2, 2, 2) + (4Z)3).

The lattice is also known as A∗
3 and D∗

3 . The NNR of the BCC-L is drawn
below.
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The NNR of the BCC-L.

Using the BCC-L as a tessellating lattice and using MathematicaTM (to
search among NNRs at least a covering diameter away from the NNR
centred at the origin) to find a sublattice Γ of small index, a 15 colour-
ing was easily found. Namely Γ has basis (-2,6,6), (6,-6,2), (2,6,-6) where

(-2,6,6) = 3(-2,2,2) +1(2,-2,2) +1(2,2,-2),
(6,-6,2) = -1(-2,2,2) +2(2,-2,2) +0(2,2,-2),
(2,6,-6) = 0(-2,2,2) -1(2,-2,2) +2(2,2,-2).

Now BCC-L has D = 2
√

5 and NNRs at least D = 2
√

5 apart so
by colouring diametrically opposed vertices different colours, we get
D = 2

√
5 as an excluded distance.
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The 15-cluster of the 15 colouring consists of 14 NNRs centered on the vertices

of the rhombic dodecahedron pictured together with one NNR at the centre

of the rhombic dodecahedron.

The 18-cluster of the 18 colouring contains 2 extra NNRs for each of the 6

shaded faces of the rhombic dodecahedron. These extra NNRs contact the

faces as shown in the right of the illustration. The medium shaded NNR is

shared between 3 18-clusters and the dark shaded NNR is shared between

6 18-clusters (and is in fact a deep hole of the sublattice Γ), this gives us

15+6/3+6/6=18 NNRs in the 18-cluster.

7. Improving the 15 colouring of 3-space.

We may however improve on this so that {D} is not the only excluded
distance but we have a range [D,D + ε) of excluded distances.

The idea we employ is that of perturbing the basis vectors

{b1, b2, b3} = {(−2, 2, 2), (2,−2, 2), (2, 2,−2)}

of BCC-L, the tessellating lattice and implicitly perturbing the basis
vectors of Γ, {l1, l2, l3}.

Γ Γ′ ∼= D3

D∗
3 Λ

�

�

�

�

P (perturbation)

P (perturbation)

T (D∗
3) T (Λ)

A commutative diagram illustrating the linear perturbation P improving the

18-colouring. (The map T is a bijective linear map from the underlying lattice

to the sublattice.)

So we have l1 = 3b1 +1b2 +1b3, l2 = −1b1 +2b2 +0b3, l3 = 0b1−1b2 +2b3

and leave the perturbation of BCC-L as a reasonable covering lattice and
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making the perturbation of the sublattice Γ closer to FCC-L so that it
has better packing properties.

We thus obtain a tessellating lattice Λ with basis (2, 3, 0), (−2, 0, 3),
(2,−3, 0) which has NNRs with a covering diameter of D =

√
22 ≈

4.69042 and the colouring sublattice Γ with basis

(6,6,3) = 3(2,3,0) +1(-2,0,3) +1(2,-3,0),
(-6,-3,6) = -1(2,3,0) +2(-2,0,3) +0(2,-3,0),
(6,-6,-3) = 0(2,3,0) -1(-2,0,3) +2(2,-3,0).

With this sublattice colouring, distinct NNRs are distance
√

389
17 ≈

4.78355 apart, which means that (D,
√

389
374D) ≈ (D, 1.020D) is the range

of excluded distances [4].

In fact the 15 colouring with the largest excluded distance range ≈
(D, 1.027D) is based on perturbing BCC-L to the lattice Λ with a basis
consisting of unit vectors which have dot products −α,−α, 2α − 1
with each other where α ≈ 0.3137 and is a root of the polynomial
3 − 10x − 3x2 + 14x3. The exact excluded distance range is

(D,

√
1 + 3α + 4α2

2 + α − α2
D) ≈ (D, 1.027D).

8. Using lattice/sublattice colouring schemes a 15
colouring of 3-space is the best possible.

The 15-colouring was found so easily using the computational tools
developed it seemed natural to try to find an even more efficient
colouring.

This proved to be hard, even when tricks were employed such as leaving
vectors in BCC-L that were too close (to have NNRs at least D apart),
hoping that the perturbation process would make them far enough apart.

Eventually it was seen that this was not possible – in broad terms because
a generic 3-space NNR has 14 faces.
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The 5 combinatorially distinct types of NNR in 3-space (Fedorev 1885, 1891).

Theorem 8.1 In 3-space any lattice/sublattice colouring scheme requires
at least 15 colours to have D (the covering diameter of the NNR of the
tessellating lattice) as an excluded distance.

Proof: The key idea is that any two NNRs contacting a common NNR
are < D apart. (Unless they contact this common NNR at diametrically
opposite vertices distance D apart.)

In this proof we look at each of the 5 combinatorial types of NNR and
show that each has at least 14 NNRs surrounding a central NNR that
are less than D apart.
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(This may also be done for all NNRs simultaneously by looking at
minimal vectors in Λmod(2Λ).) [4]

1. Consider tessellating 3-space with a generic NNR - truncated
octahedral NNR (the NNR of BCC-L is an example):
14 other NNRs contact this on faces and clearly all 1+14+0+0=15
NNRs must be coloured differently to have D as an excluded
distance.

2. Consider tessellating 3-space with a hexa-rhomboid NNR:
12 other NNRs contact this on faces and 4 other NNRs contact
this on edges (those separating the hexagonal faces), these
1+12+4+0=17 NNRs must be coloured differently to have D as
an excluded distance.
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3. Consider tessellating 3-space with a rhombic dodecahedral (the
NNR of FCC-L is an example):
12 other NNRs contact this on faces and 3 pairs of NNRs contact
this NNR on diametrically opposite vertices (those where 4 faces
meet), each NNR in a pair may be coloured the same (as they
are D apart) but the 3 pairs must be coloured differently, thus at
least 1+12+0+3=16 colours are required for D to be an excluded
distance.

4. Consider tessellating 3-space with a hexagonal prismic NNR:
8 other NNRs contact this on faces and 12 other NNRs contact
this NNR on edges (those that bound the hexagonal faces), thus
all 1+8+12+0=21 NNRs need to be coloured differently for D to
be an excluded distance.
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5. Consider tessellating 3-space with a cuboidal NNR:
6 other NNRs contact this on faces, 12 others on edges and
4 pairs of NNRs contact this NNR on diametrically opposite
vertices, thus at least 1+6+12+4=23 colours are required for
D to be an excluded distance. �

We have thus shown that lattice/sublattice colourings with D as an
excluded distance need at least 15 colours [4].

We now show that for any excluded distance 15 colours are necessary.

Let N be the NNR of Λ centred on the origin.

Theorem 8.2 If 3-space is coloured using a lattice/sublattice colouring
scheme then the colouring requires at least 15 colours to exclude any
distance.

Proof. Suppose to the contrary we colour R3 using a sublattice Γ of
index < 15 in the tesselating lattice Λ, then by Theorem 8.1 there are
two NNRs λ1 + N and λ2 + N that are necessarily coloured the same
(colour 0) and make contact with N (coloured with colour 1 say) at
facets that are not diametrically opposite vertices of N.

The situation is illustrated below using decagons (decagons cannot be
NNRs for any lattice but this shape illustrates the argument better than
actual NNRs.)
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Consider the straight line that passes through the centroids of the contact
faces between N,λ1 +N and λ2 +N. Due to the translational symmetry
of lattices this line is only interior to NNRs coloured 0 and 1. Considering
only this line we have the situation as shown in the diagram below.

Let l be the length of the line in any one Voronoi region. Note that the
points corresponding to the circles may have colours different from 0 and
1 (if the contact faces are of dimension less than 2).

Clearly the only candidates for excluded distance are odd multiples of l.

Let us contract R3 by a factor of (2m+1), that is map x to x/(2m+1).
The situation for a segment of the line of length (2m + 1)l is shown in
the diagram below.
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The endpoints will locally look as they do on the boundary of N .
Clearly the line segment can be both shortened infinitesimally (with
both endpoints the same colour) and can be lengthened infinitesimally
(with both endpoints the same colour) and so by continuity the length
of the line segment can remain the same (with both endpoints the same
colour).

Thus (2m + 1)l cannot be an excluded distance if Γ has index < 15 in
Λ. From this it follows that if we colour R3 using a lattice/sublattice
colouring scheme with less than 15 colours there can be no excluded
distance. �
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Towns. He has a Ph.D. in Mathematics
and a diploma in Elementary Educa-
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Basic Principles

A Math Fair consists of a number of booths in a carnival setting, each
booth presenting an interactive mathematical puzzle or game. The
primary aim is to promote interest in mathematics, and develop problem-
solving skills.

A typical Math Fair booth consists of a problem presented in very brief
verbal description, but with manipulative pieces which ideally should
help people solve the problem, in addition to making it come alive. The
problem does not have to be elaborate, or new, since most will be new to
the students themselves. They are not provided with the solutions, and
must work it out for themselves. This way, they will be well-prepared to
face the audience.

It should be pointed out that a booth at a Math Fair is not meant to be a
mini-station for teaching concepts. Also, problems which are presented
in poster form and require pencil-and-paper work on the side are not
suitable for Math Fairs.

1This is an enhanced version of the text of a plenary speech delivered at the
Fourth Congress of the World Federation of National Mathematics Competitions in
Melbourne, Australia on August 8, 2002.
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The first Math Fair in Edmonton was held sometime last century at
Our Lady of Victories Catholic Elementary School, under the direction
of Vice-Principal Mike Dumanski. There was a dress rehearsal in the
school gymnasium, and a formal presentation in a local shopping mall
two days later. It was an inclusive event in that every child in the school
participated. They were divided into groups of three or four by grade
levels, with each group responsible for a booth.

A most important feature of the Math Fair is that there is no judging,
and no awarding of prizes. Children learn to do things for their intrinsic
value. They are genuinely interested in what their schoolmates have been
working on, and try out the problems on one another. It is doubtful
if this congenial atmosphere is compatible with a more competitive
environment.

My colleague Ted Lewis has taken the Math Fair one step further and
makes it a compulsory part of MATH 160, a course for students in
Elementary Education at the University of Alberta. The university
students prepare a Math Fair first, presenting it in two sessions so that
they can assess the work of one another. Then they take the show on
the road and set up their Math Fair in the gymnasium of an elementary
school for their students, who come in one class at a time. Using this as
a model, the elementary school students produce their own Math Fair.

In this century, the waiting list of schools waiting for the Math Fair has
grown so long that instead of taking the Math Fair to them, Ted sets up
the Math Fair on university campus and brings in children from several
schools at a time. This has become a very popular event.

Ted Lewis has written a Math Fair Booklet which the University
of Alberta and the Pacific Institute of Mathematical Sciences sell
at nominal cost. Those who are interested can contact Ted at
tlewis@math.ualberta.ca.

Borrowing Problems

The most often asked question about the Math Fair is: Where do you
find the problems? Some of the time, I make them up. Most of the
time, I borrow them from elsewhere. The best sources are the writings
of Martin Gardner, and the vast Russian literature. As will be seen,
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they also borrow from each other.

Some problems are ready-made for the Math Fair. This well-known
example is taken from [4], titled “Wolf, Goat, and Cabbage”. It is later
discussed in [1] within a broader theoretical context.

A man has to take a wolf, a goat, and some cabbage across a river. His
rowboat has enough room for the man plus either the wolf or the goat or
the cabbage. If he takes the cabbage with him, the wolf will eat the goat.
If he takes the wolf, the goat will eat the cabbage. Only when the man
is present are the goat and the cabbage safe from their enemies. All the
same, the man carries wolf, goat, and cabbage across the river. How?

This is not a hard problem. After solving it, we have to figure out how
to present it. At the inaugural Math Fair, an actual basin of water was
used to represent the river. Unfortunately, the boat was so small that
whenever any of the figures used to represent the man, the wolf, the goat
or the cabbage was put into it, it sank! A larger boat was used when
the Math Fair moved to the mall, but now there was plenty of room for
all four of them. Also, by the end of the evening, there was a real river
under the table, prompting a teacher to exclaim in exasperation, “No
more water next time!”.

Perhaps a virtual river drawn on paper will do. However, having the
figures to move around not only makes the problem come alive, it actually
helps us visualize what moves are legal, and what moves are sensible.

Even if a problem is ready-made for the Math Fair, there may still be
room for improvement. Consider this example from [3], titled “Digit-
Placing”, which appears later in [7].

The digits from 1 to 8 are to be placed in the eight boxes in the diagram
below, with this provisio: no two consecutive digits may go in boxes that
are directly connected by a line.
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Again, this problem is not hard. However, as phrased, it is an all-or-
nothing kind of problem — either you can solve it or you cannot. I
suggest the following modification. Place the eight digits any way you
wish. You score 1 point for each pair of boxes connectd by a line and
containing two digits which are not consecutive. Thus your score is 17
points if you can solve the original problem. However, even if you do not
succeed in solving it completely, you can still obtain a positive score.

Not every problem is suitable for the Math Fair format. Here is an
example from [9], titled “Family Planning”.

A family of four (father, mother, son and daughter) went on a hike. They
walked all day long and when evening was already drawing on, came to
an old bridge over a deep gully. It was very dark and they had only one
lantern with them. The bridge was so narrow that it could hold no more
than two persons at a time. Suppose it takes the son 1 minute to cross
the bridge, the daughter 3 minutes, the father 8 minutes, and the mother
10 minutes. Can the entire family cross the bridge in 20 minutes? If so,
how? (When any two persons cross the bridge, their speed is equal to the
slower one. Also, the lantern must be used while crossing the bridge.)

Despite the superficial resemblance to the “Wolf, Goat, and Cabbage”
problem, it is not easy to find a meaningful way to represent the relative
speeds of the family members. Although this is an excellent problem, I
have to reluctantly abandon it as far as the Math Fair is concerned.

There are also problems which at first sight are totally unsuitable for
the Math Fair. Nevertheless, with some modificiation, they can be used.
One of the best example is from [5], which appears later in [2] under the
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title “The Damaged Patchwork Quilt”.

Part of the centre of the 9 × 12 patchwork quilt in the diagram below
became worn, making it necessary to remove 8 of the 108 squares as
indicated. Cut the quilt into just two parts that can be sewn together to
make a 10 × 10 quilt.

This is a difficult problem. One approach is to “downsize” it, which also
yields the benefit of providing subsidiary problems at lower levels. We
may generalize the 9× 12 rectangle with a 1× 8 hole in the middle to a
2n − 1 × 2n + 2 rectangle with a 1 × 2n − 2 hole in the middle, and the
10 × 10 square to an 2n × 2n square. The original problem is the case
n = 5.

For n = 1, we have a 1 × 4 rectangle with a 1 × 0 hole in the middle
and a 2 × 2 square. This is going too far down. The case n = 2 turns
out to be quite easy. Since the top row of the rectangle has length 6
while the target square has side 4, we must have a cut as indicated in
the diagram below. Another cut in the symmetric position yields the
desired two parts.
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�

In the case n = 3, we also have to make a cut along the top edge of the
5 × 8 rectangle at the point 6 units from a corner. However, if we cut
through to the hole as we did in the case n = 2, it will not work. After
a bit of fiddling around, we may arrive at the following solution.

�

From these preliminary investigations, it is not unreasonable to assume
that the two parts in the solution are congruent to each other, and
placed rotationally symmetric to each other. However, we are certainly
not confident at this point about solving the original problem.

Perhaps we should pause and consider the companion dilemma of how
to present it if we somehow suceeed in finding a solution. The obvious
model is providing lots of scissors and pre-cut rectangles with holes, but
this leaves a lot to be desired. Mixing kids and scissors is never a good
idea. Besides, the floor will be littered.

The most important drawback is that this model does not help us find
a solution to the problem. Cutting at random will not work. In fact,
we have to have the solution already in our mind before we can do any
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meaningful cutting. This problem was offered and rightly rejected at the
inaugural Math Fair. It was years later that I finally came up with a
fantastic model. Let me illustrate with the case n = 4.

Draw two playing boards, one a 7× 10 rectangle with a 1× 6 hole in the
middle, and the other an 8 × 8 square. Provide a large supply of bingo
chips of two different colours, say yellow and blue. Our objective is to
fill both boards with chips in such a way that those of the same colour
form the same shape on both boards. This will yield the solution to the
problem.

We begin by placing a yellow chip at the top left corner of the square
board and a blue chip at the bottom right corner. This signifies that
these two squares do not belong to the same part, a most reasonable
assumption. We define these two corners as the principal corners of
the respective parts. We mark them in the same orientation since we
anticipate that the two parts are in rotational symmetry.

We now move over to the punctured rectangular board and mark the
principal corners as indicated. Besides playing the chips at the corners,
we observe that in the square board, the yellow chips cannot extend
beyond the eighth column from the left while the blue chips cannot
extend beyond the eight column from the right. This allows us to place
the additional chips on the rectangular board.

Moving back to the square board, we can fill the top row with yellow chips
and the bottom row with blue ones. This is because in the rectangular
board, the yellow chips cannot extend beyond the seventh row from the
top and the blue chips cannot extend beyond the seventh row from the
bottom.

Moving over to the rectangular board, we notice that the two blue chips
on the seventh row from the bottom cannot extend at all to the left.
This means that we must have six yellow chips on the second row from
the top, going from left to right. Similarly, there must be six blue chips
on the second row from the bottom, going from right to left.
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We have now arrived at the position in the diagram above. Continuing
with the same strategy, we can complete the solution of the problem as
in the diagram below.
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Not only have we found a good way of presenting the problem, we have
actually found an excellent way of solving it. This is serendipity!

This approach may be used to solve related problems. In the above
problem, the two parts we end up with are congruent to each other.
Of course, they also have to fit together to form a square. Since
the punctured rectangle has rotational symmetry, merely asking for a
division into two congruent parts is pointless. However, if a figure does
not have any obvious symmetry, the task may be quite challenging. Here
is an example from [6], titled “Board”.
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Divide the board in the diagram below into two congruent parts.

There are two choices for the principal corners. Since the board does
not have rotational symmetry, we choose opposite orientations for the
corners. In the first attempt as shown in the left diagram below, the
boundary squares are easily filled out. We observe that in the third row
from the bottom, we can have at most two blue chips going from right
to left. This means that in the third column from the left, we must have
at least four blue chips going from bottom to top. This in turn means
that in the second column from the bottom, we must have at least four
yellow chips going from left to right. However, this is impossible as the
blue chips just placed are in the way. The other choice leads easily to
the solution shown in the right diagram below.
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It has been said that it is a trick if you use it once, and a method if you
use it more than once. We have discovered a good method for solving a
certain class of problems.
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Exercises

1. How can a goat, a head of cabbage, two wolves, and a dog be
transported across a river if it is known that the wolf is “culinarily
partial to” goat and dog, the dog is “on bad terms with” the goat,
and the goat is “not indifferent” to the cabbage? There are only
three seats in your boat, so you can only take two passengers —
animal or vegetable — at a time. [8]

2. Make the “Digit-Placing” problem multi-levelled by devising a
diagram with n boxes into which the digits 1 to n are to be placed
under the same proviso, for 4 ≤ n ≤ 7, such that the solution is
essentially unique.

3. Solve the “Family Planning” problem.

4. Solve the “Damaged Patchwork Quilt” problem.

5. Dissect each of the following diagrams into two congruent pieces.
As a hint, the principal corners of one of them is given. [6]

�
�

� �
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WFNMC International & National Awards

David Hilbert International Award

The David Hilbert International Award was established to recognise
contributions of mathematicians who have played a significant role over
a number of years in the development of mathematical challenges at the
international level which have been a stimulus for mathematical learning.

Each recipient of the award is selected by the Executive and Advisory
Committee of the World Federation of National Mathematics Competi-
tions on the recommendations of the WFNMC Awards Sub-committee.

Past recipients have been: Arthur Engel (Germany), Edward Barbeau
(Canada), Graham Pollard (Australia), Martin Gardner (USA), Murray
Klamkin (Canada), Marcin Kuczma (Poland), Maria de Losada (Colom-
bia), Peter O’Halloran (Australia) and Andy Liu (Canada).

Paul Erdös National Award

The Paul Erdös National Award was established to recognise contribu-
tions of mathematicians who have played a significant role over a number
of years in the development of mathematical challenges at the national
level and which have been a stimulus for the enrichment of mathematics
learning.

Each recipient of the award is selected by the Executive and Advisory
Committee of the World Federation of National Mathematics Competi-
tions on the recommendations of the WFNMC Awards Sub-committee.

Past recipients have been: Luis Davidson (Cuba), Nikolay Konstantinov
(Russia), John Webb (South Africa), Walter Mientka (USA), Ronald
Dunkley (Canada), Peter Taylor (Australia), Sanjmyatav Urjintseren
(Mongolia), Qiu Zonghu (China), Jordan Tabov (Bulgaria), George
Berzsenyi (USA), Tony Gardiner (UK), Derek Holton (New Zealand),
Wolfgang Engel (Germany), Agnis Andžans (Latvia), Mark Saul (USA),
Francisco Bellot Rosado (Spain), János Surányi (Hungary), Istvan
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Reiman (Hungary), Bogoljub Marinkovich (Yugoslavia), Harold Reiter
(USA) and Wen-Hsien Sun (Taiwan).

The general meeting of the WFNMC in Melbourne agreed,
from 2003, to merge the above two awards into one award titled
the Paul Erdös Award.

Requirements for Nominations for the Paul Erdös
Award

The following documents and additional information must be writtten
in English:

• A one or two page statement which includes the achievements of
the nominee and a description of the contribution by the candidate
which reflects the objectives of the WFNMC.

• Candidate’s present home and business address and telephone/telefax
number.

Nominating Authorities

The aspirant to the Awards may be proposed through the following
authorities:

• The President of the World Federation of National Mathematics
Competitions.

• Members of the World Federation of National Mathematics
Competitions Executive Committee or Regional Representatives.

The Federation encourages the submission of such nominations from
Directors or Presidents of Institutes and Organisations, from Chancellors
or Presidents of Colleges and Universities, and others.

* * *
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Pigeonholes and Two-way Counting1
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In this paper, we look at two techniques which are useful in solving
problems. Although the underlying idea is very simple in both cases,
they often allow us to solve quite complicated looking problems; see also
[1],[11].

First of all, we state the Pigeonhole Principle in several of its different
forms.

Suppose that N objects are placed in k pigeonholes. Then:

• if N > k, some pigeonhole contains more than one
object;

1This paper was presented as a keynote address at WFNMC Congress-4,
Melbourne August 2002
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• if N > mk, some pigeonhole contains more than m
objects.

If the average number of objects per pigeonhole is a, then:

• some pigeonhole contains at least a objects;

• some pigeonhole contains at most a objects.

Next, we consider a few examples where this idea is applied.

Example 1: Birthdays
Among 367 people, at least two share a birthday.

In this case, the pigeonholes are the 366 possible dates in a year, where
we are allowing for a leap year.

Note here what the pigeonhole principle doesn’t tell us: we have no idea
which two people share a birthday, nor what day the shared birthday
might be, nor whether several days of the year are shared birthdays
among these particular people, nor even whether all 367 of them were
born on Leap Day.

Example 2: Choosing numbers
Suppose we choose some 19 of the 34 numbers

1, 4, 7, 10, 13, 16, ..., 97, 100.

Then, among our chosen numbers, there are two which sum to 104.

To see this, look at the following table.

The number 103 does not belong to our given set, so the number 1 is not
part of a pair that sum to 104. Next we have 16 pairs of numbers such
that each pair sums to 104. Finally we have the number 52, again not
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1
4 100
7 97

10 94
13 91
16 88
19 85
22 82
25 79
28 76
31 73
34 70
37 67
40 64
43 61
46 58
49 55

52

one of a pair in this set, summing to 104. These give us 18 pigeonholes:
two single numbers and 16 pairs.

Thus we could choose one number from each pigeonhole, a total of 18
numbers, without having any two that sum to 104. But to choose 19
numbers from this set, we must take both numbers from at least one of
the 16 pairs. See [3].

Example 3: Aspirins

A man takes at least one aspirin a day for 30 days. If he takes 45 aspirins
altogether, then in some sequence of consecutive days, he takes exactly
14 aspirins.

Let ai be the number of aspirins he takes in the first i days. Since he
takes at least one aspirin a day, we know that ai < ai+1 for i = 1, · · · , 29.
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Thus
1 ≤ a1 < a2 < a3 < · · · < a30 = 45.

When does he take exactly 14 aspirins? We also know that

15 ≤ a1 + 14 < a2 + 14 < · · · < a30 + 14 = 59.

Then the 60 numbers {ai|i = 1, · · · , 30} and {ai + 14|i = 1, · · · , 30} take
at most 59 distinct values. By the pigeonhole principle, some two of
these numbers must be equal.
Since the inequalities given above are all strict, we cannot have ai = aj

for distinct values of i and j, so for some i and j, we have ai = aj + 14,
and he takes exactly 14 aspirins on days j + 1, · · · , i.

Example 4: Decimal representation
In the decimal representation of the number n = 5×734, some digit must
occur at least four times.

By the Pigeonhole Principle, every integer with more than 30 digits must
have at least one of the 10 decimal digits occurring at least four times
in its decimal representation.

But log n = log 5 + 34.log 7 = 29.4324 < 30. So n has 30 digits.
If none of the 10 decimal digits occurs more than three times, then each
of them must occur exactly three times. Then the sum of the digits must
be divisible by 3, so that n itself would be divisible by 3.
This is not the case, since the only primes dividing n are 5 and 7. So
some digit occurs at least four times. See [6].

Example 5: Seven real numbers
Among any seven real numbers y1, y2, . . . , y7, there are two, say yi and
yj , such that

0 ≤ yi − yj

1 + yiyj
≤ 1√

3
.

This expression brings to mind the formula

tan(xi − xj) =
tanxi − tanxj

1 + tanxi.tanxj
,
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especially since tan0 = 0 and tanπ
6 = 1√

3
.

For n = 1, 2, · · · , 7, let’s try yn = tanxn, mapping the seven real num-
bers to seven images in the range between −π

2 and +π
2 , as shown in the

diagram.

By the Pigeonhole Principle, some two of the seven values xi, for i =
1, · · · , 7 must differ by not more than π

6 so

0 ≤ xi − xj ≤ π

6
.
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In this range, the tangent is strictly increasing, so we have exactly what
we need, namely,

tan0 ≤ tan(xi − xj) ≤ tan
π

6
.

See [8].

Example 6: Coloring the plane
If we colour the plane in just two colours, Red and Blue, then somewhere
in the plane, there must be a rectangle with all four of its corners the
same colour.

To see this, choose any three parallel lines, L1, L2, L3, in the plane, and
any seven points on one of these three lines, say, p1, · · · , p7 on line L1..
Colour each of these seven points either red or blue. By the Pigeon-
hole Principle, at least four of the points must be the same colour, say,
p1, p2, p3, p4 are red.

Now drop perpendiculars from these four red points to the line L2, and
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consider the points q1, q2, q3, q4 where the perpendiculars from L1

intersect L2. If we colour any two of these four points red, say, qi and qj ,
then we have a rectangle with all its four corners red, namely, pi, qi, qj , pj .
To avoid this happening, we must colour at least three of the chosen
points on the line L2 blue, say, q1, q2, q3 are blue.

Finally we drop perpendiculars from these points to the line L3, and
consider the points r1, r2, r3 where the perpendiculars from L2 (and
hence also from L1) meet L3. If two of these points, say, ri, rj , are
colored blue, then we have a rectangle qi, ri, rj , qj with all four of its
corners blue. If at most one point is colored blue, then two points, say,
rm, rn, are colored red, and we have a rectangle pm.rm, rn, pn, with all
four of its corners red.

Example 7: Circle and Annulus
Suppose that C is a circle of radius 16 units, and that A is an annulus
with inner and outer radii 2 and 3 units respectively. Let a set S of 650
points be chosen inside C. Then, no matter how these points are scat-
tered over the circle C, the annulus A can be placed so that it covers at
least 10 of the points of S.

Now suppose that a copy of A is centered at each of the 650 points of S.
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At a point near the edge, A will stick out past the circumference of C.
But since the centre of A is inside C, a circle D, concentric with C and
of radius 19 units, will contain all 650 copies of A in its interior.

The area of A is π×32−π×22 = 5π. Hence 650 copies of A must blanket
D with a total coverage of

650 × 5π = 3250π.

If each point of D is covered by at most 9 copies of A, then the total
area covering D is at most 9 times the area of D, that is,

9(π × 192) = 9(361π) = 3249π.

Thus there must be some point X of D on which at least 10 copies of A
are piled up. If Yi is the centre of an annulus that covers such a point
X, then the distance XYi must be between 2 and 3.
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Now we can turn things around and centre a copy A∗ of A at X instead
of at Yi. Then A∗ covers Yi.

Since at least 10 copies of A cover X, the special annulus A∗ centered at
X covers their 10 (or more) centres Y1, Y2, · · · , Y10, each of which belongs
to the set S. See [8].

Example 8: Marching Band
When the leader of a marching band faced his musicians, he saw that
some of the shorter people were hidden in the pack behind taller players.
Keeping the columns intact, he brought the shorter ones forward till the
people in each column stood in nondecreasing order of height from front
to back.

Later, they were to salute the dignitaries in a reviewing stand which they
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would pass on their right, so the bandmaster went around to see how
they looked from the side. He found that some of the shorter players
were again blocked from view.
To correct this, he did to the rows what he had just done to the columns:
keeping the rows intact, he arranged the players within each row in
nondecreasing order of height from left to right (that is, from his left
to right as he faced the troupe).
In fact, he had no need to worry that this shuffling about within the rows
would foul up his carefully ordered columns.

For suppose that after both rearrangements, we find, in column i, person
A who is both taller and closer to the front than person B. We know
that in row j, everyone in segment Q is no taller than person B, and in
row k, everyone in segment P is no shorter than person A. Since A is
taller than B, everyone in P is taller than everyone in Q.

It is important to note here that the total number of people in P and Q
is n + 1.
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Now we reverse the rearrangement of the rows, so that we are back to
the stage where the columns were ordered but the rows still needed or-
dering.
In row j the elements of Q are put into their former places in the row,
and in row k the elements of P are sorted into theirs. Since we have a
total of n+1 people to replace in their original columns, the Pigeonhole
Principle tells us that two of them must finish up in the same column,
say, column �.

At this intermediate stage, the columns are properly sorted, with X at
least as tall as Y. But X ∈ Q and Y ∈ P so Y must be taller than X.

Now we have a contradiction: it arose from assuming that the row re-
arrangement must have disturbed the column ordering. So, in fact, the
row rearrangement caused no disturbance of the column ordering.

This example parallels one that arises in considering the properties of
Young Tableaux; see [9].
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Now we look at our second basic technique, namely, Two-way
Counting, which simply says that counting the number of elements of a
set in two different ways gives the same result, a fact which is often used
in combination with the Pigeonhole Principle. A convenient statement
of this idea is the following:
Summing the entries in a matrix by rows or by columns gives the same
result.
(However, at the time this was written, most references on the web to
two-way counting concerned Enron, Arthur Anderson, and the fact that
counting the same thing in several different ways gives as many different
results as convenient.)

Example 9: Sums of numbers
If the nine non-negative real numbers

a1, a2, a3, a4, a5, a6, a7, a8, a9

sum to 90, then there must be four of them with sum at least 40.

We write the nine numbers four times, arranged as shown in the table.
Thus each row of the table sums to 90, and the whole table must sum to
360. But now each of the nine columns must sum to at least 360/9 = 40.

a1 a2 a3 a4 a5 a6 a7 a8 a9

a2 a3 a4 a5 a6 a7 a8 a9 a1

a3 a4 a5 a6 a7 a8 a9 a1 a2

a4 a5 a6 a7 a8 a9 a1 a2 a3

Example 10: Divisors of positive integers
For every positive integer n, let d(n) be the number of positive integers
that divide n. For instance:

d(15) = 4, with divisors 1, 3, 5, 15;
d(16) = 5, with divisors 1, 2, 4, 8, 16;
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d(17) = 2, with divisors 1, 17;
d(18) = 6, with divisors 1, 2, 3, 6, 9, 18.

Again d(41) = 2, d(42) = 8, d(43) = 2.
The function d(n) keeps fluctuating, but we can use two-way counting
to get an idea of its average behaviour, namely:
The average number of divisors of the first n positive integers,

d(1) + d(2) + d(3) + · · · + d(n)
n

is approximately logen.

We think of d(k) as the number of pairs (j, k) such that j|k. In an n×n
array, suppose that

(j, k) =
{

1 if j|k,
0 otherwise.

Then the sum d(1) + d(2) + · · · + d(n) is the sum of the entries in the
array, counted column by column.
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Now we sum by rows instead. How many 1s are there in row j ? We want
the number of multiples of j between 1 and n. This is approximately n/j
(or, more precisely, between n/j and (n/j)−1). So the sum of the entries
in the array is roughly

n

1
+

n

2
+ · · · + n

n
= n(

1
1

+
1
2

+ · · · + 1
n

).

But now
d(1) + d(2) + · · · + d(n)

n

is roughly
n × logen

n
= logen

since the sum by rows equals the sum by columns. See [14].

Our next example needs the idea of a transversal, that is, a set of n
cells, one in each row and one in each column, in an n × n square. In
such a square there are

n × (n − 1) × (n − 2) × · · · × 1 = n!

transversals. The diagram shows the possible transversals in a 3 × 3
square.
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Example 11: Transversals with distinct numbers
Let n ≥ 4 be even. In any n × n square in which each of n2/2 numbers
appears twice, there is a transversal without duplication.

Certainly n = 2 is an exception.

as shown in the top right. The 4 × 4 that shows a transversal without
duplication. The main diagonal has a duplication but the transversal
with cells circled does not.

Note: if the two cells occupied by a given number are always in the
same row or the same column, then no transversal has any duplication.
Trouble only starts when a pair of cells occupied by the same number
are not in the same row or the same column.
We call a pair of cells in different rows and different columns, but con-
taining the same number, a singular pair.

• Any singular pair is contained in precisely (n − 2)!
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transversals. For if we choose a singular pair, then we
can choose the next element in n− 2, the next in n− 1
ways, and so on.

• Every transversal contains at least n/2 distinct num-
bers, since no number occurs more than twice in the
square.

• If there are p singular pairs, then 0 < p < n2/2.

Suppose a given n×n square has p singular pairs. We take an array with
n! rows, one for each transversal, and p columns, one for each singular
pair. If t is a transversal and s a singular pair, then:

(t, s) =
{

1 if t contains s,
0 otherwise

and we sum the entries in two ways.

Summing by columns, the total is

(p) × (n − 2)!

and summing by rows, the total is

(n!) × S

85



Mathematics Competitions Vol 16 No 1 2003

where S is the average number of singular pairs per transversal. Then

S =
p(n − 2)!

n!

and, since p ≤ n2/2,

S ≤ n2

2
× (n − 2)!

n!
=

n

2(n − 1)
.

But n ≥ 4 which means that

S < 1

and there must be a transversal with less than one singular pair, that is,
with no duplication.

This kind of argument, combining the Pigeonhole Principle with Two-
way Counting, is sometimes referred to as ‘existence by averaging’ [14],
[15], [10], and is the source of many interesting problems. We look briefly
at examples involving a latin square of order n, that is, an n× n square
based on the set {1, 2, . . . , n}, in which each element appears precisely
once in each row and in each column. We use the fact that

(1 − 1
q
)q → 1

e
≈ 0.37.

An argument similar to that of Example 11 shows that the average
number of distinct symbols in the transversals of a latin square of order
n must be

n(1 − 1
2!

+
1
3!

− . . . ± 1
n!

),

so there is a transversal with at least (1 − 1
e )n ≈ 0.63n elements.

Now suppose that qm = n. Then in a latin square of order n, there exist
q rows such that the union of the sets of integers in the first m columns
of these q rows contains at least

n[1 − (1 − 1
q
)q]
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distinct elements. For instance, if m = 2 and q = 3, then in a latin
square of order 6, there are 3 rows such that the first 2 columns of these
rows contain at least

6[1 − (1 − 1
3
)3] = 38/9

distinct elements. In other words, they contain at least 5 distinct
elements; see [15].

In the 6× 6 latin square, rows 1, 2 and 4 contain all the elements except
5 in columns 1 and 2.

Even more interesting is the Ryser conjecture:
In a latin square of order n, there is a transversal with n elements if n is
odd, and a transversal with n−1 elements, if n is even. See also [2],[12],
[13], [16].

It seems appropriate to conclude a collection of problems from
mathematics competitions with a competition problem concerning a
mathematics competition, namely, one from the 2001 IMO. The solution
given here was due to Reid Barton, a gold medallist ([4]).

Example 12: Mathematics Competition
21 girls and 21 boys took part in a mathematical contest. Each contes-
tant solved at most six problems. For each girl and each boy (that is, for
each boy–girl pairing) at least one problem was solved by both of them.
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Then there must be a problem that was solved by at least three girls and
at least three boys.

To see this, take a 21 × 21 array, with one row for each girl and one
column for each boy. In each cell of the array, place a letter representing
a problem that was solved by the girl in the corresponding row and the
boy in the corresponding column. Then every cell of the array will be
filled.

No row can contain more than six different letters, so each row contains
repeated letters. Look for letters that appear at least three times in a
row, and colour every cell of the row containing those letters red.
How many cells in each row are colored red?
Each cell not colored red is filled with a letter that occurs at most twice
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in the row. At most five letters can occur at most twice, so at most 10
cells are not colored red. Thus the number of red cells in each row is at
least 11, so
more than half the cells in each row are red.

A similar argument works for the boys, where we colour cells in each
column blue to represent problems solved by at least three girls. So
more than half the cells in each column are blue.

Since more than half the cells are red and more than half are blue, there
must be at least one cell colored both red and blue.
The letter in this cell represents a problem that was solved by at least
three girls and at least three boys.
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Ali Rejali is Associate Professor of
Mathematics and Statistics at Isfahan
University of Technology, Iran. He is
the Cofounder of the Iranian Mathe-
matics Competitions, founder of Isfa-
han Mathematics House and Societies
for Teachers of Mathematics in Iran
and the Iranian Association for Mathe-
matics Teachers’ Societies. He is also
a member of the Awards Committee
of the World Federation of National
Mathematics Competitions.

We had many goals for improvement of mathematics education
when we started the mathematics competition in Iran, but due
to some changes on the rules, most of them have not been
achieved. One of them was the improvement of mathematics
knowledge, and problem solving skills among teachers. The
results of a study on the involvement of mathematics teachers
in competitions, as well as the positive and negative effects of
the competitions on education in Iran, is presented.

Introduction

High school mathematics competitions in Iran started in 1984 [1]. One
of the goals was to involve the teachers, schools, cities and provinces
as well as students in competition type activities for improvement of
mathematics education throughout the country [2].

In order to achieve this goal, we started competitions in schools, cities
and provinces. The teachers were involved in all activities related to
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competitions [3]. But later on due to a need for the success of the
Iranian teams in IMOs, they have changed the rules.

Now a two stage national competition is held each year. On the first
stage, through a multiple choice national test, a central committee
chooses the winners of the first round. Then there is another competition
among the winners of the first round, through which the committee
chooses the winners of the second round. These students take part in a
series of training workshops, and the IMO team will be chosen from the
best performers of these students.

Under this policy, the teachers are less involved, and many students do
not take part in competitions as they feel unsuccessful if they have not
achieved high results in these competitions, and, as a result, there are
few benefits to mathematics education in general from these activities.

In order to test above hypothesis, we ran an opinion poll study among
all mathematics teachers throughout the country, with the help of the
Iranian Association of Mathematics Teachers’ Societies. What follows is
the procedure and the results:

Sampling Procedure

Cluster sampling is being used with 121 teachers from the list of the
members of different Mathematics Teachers’ Societies throughout the
country, (these teachers are more aware of the news and problems about
mathematics education).

Here, the clusters are the provinces, each listing unit consists of members
of Mathematics Teachers’ Society of that province. Elementary unit
is a typical high school mathematics teacher, as a member of the
corresponding society [4]. Sample size (n = 121) is obtained by
estimating the overall sample size with the use of the variance for similar
study in Iran and 10 percent accepted error.

The number of elementary units in each province was calculated relative
to the number of population of that province, (using 1996 Iranian
Census). A tested questionaire was designed for this opinion poll, and
follow up attempts have been made.
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Results

• Only 65.3% of these mathematics teachers are familiar with the
procedure of mathematics competitions.

• Only 16.5% of them agree with the procedure. (Some small
provinces with low level of mathematics education agree more.)

• Most of them believe that mathematics competitions should be
more popular.

• 54.5% of the teachers believe that in general mathematics
competitions have positive effects on mathematics education.

• 57.9% believe that the competitions have positive effect on solving
the problem of lack of interest in mathematics.

• 56.2% believe that the competitions stimulate students in learning
more mathematics.

• 50.4% believe that they encourage students in solving problems.

• 74% believe that mathematics education will benefit from mathe-
matics competitions.

• But 76% of these teachers believe that this competition does not
belong to all students, and 58.7% believe that it should be designed
so that most students can be involved in it.

For the involvement of teachers in running competitions,

• only 39.7% of teachers believe that they are involved in making
questions, 59.5% are involved in choosing students to participate in
Iranian mathematics competitions from schools, only 33.9% believe
that the teachers are involved in choosing winners in cities, 9.9% in
provinces and 2.5% in the country (National Iranian Mathematics
Olympiad). Even for organizing the competitions as observers only
19% are involved.
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• Although only 31.4% believe that mathematics competitions have
positive effect on mathematics education of all students, most
believe that it stimulates students in general.

• On the other hand, only 9.9% believe that it has negative side
effects on students, due to discouragement from not being winner.

• 33.4% believe that it is a high school business, and only 24.8%
believe that it is a university business.

• 28.9% believe that the competitions have positive effects on social
behaviour of the students. 44.6% have no idea on this question.

• Only 11.6% believe that the competitions have negative effects on
social behaviour of students, due mostly to discouragement.

• 52.1% believe that separating the so called gifted students is not a
suitable activity for mathematics education.

• 54.5% believe that mixing up students has positive effects on the
improvement of education.

• 57.9% disbelieve the method of choosing gifted students. Some
of them (low%) believe that the teachers are capable of choosing
these students throughout the classes.

• 53.7% believe in the positive effects of competitions on winners, and
35.5% in the negative effects of the competitions on non winners.

• Most of the teachers believe that competitions should be more
popular, and we should prepare all students, even the students
from low income families to take part in them.

• Most of the teachers agree with the author for the need for more
involvement of teachers in competitions.

The overall results are:

1. A need for more involvement of teachers.

2. A need for changing rules to have higher involvement of both
teachers and students.
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3. The need to prepare all students for taking part in competitions.

4. In any situation, competitions have positive effects on mathematics
education [3].

The author is thankful to Miss Fathi and Miss Masaeli for working on the
results, to the Iranian Association of Mathematics Teachers’ Societies,
and all Societies for Mathematics Teachers in Iran, for helping him in this
opinion poll. Also he thanks the Iran Education Evaluation Organization
for its financial support.
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Selected Problems from Tournament 24

In Tournament 24 the Problems Committee challenged students to
solve a wide range of problems: from polynomial equations to three-
dimensional geometric inequalities. In the second round, both Junior
and Senior O Level papers consisted of five problems, and Junior
and Senior A Level papers were made up of six and seven problems
respectively. Here are selected questions with solutions from this round
of the Tournament.

1. We put 2003 dollars in several purses, and the purses in several
pockets. The number of dollars in any pocket is less than the total
number of purses. Is it necessarily true that the number of dollars
in some purse is less than the total number of pockets?

Solution. Let m be the total number of pockets and n be the
total number of purses. Let x be the maximum number of dollars
in any pocket and y be the minimum number of dollars in any
purse. Then ny ≤ 2003 ≤ mx. It follows that if n > x, then we
must have m > y.
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2. In triangle ABC, AB = BC. K is a point on AB and L a point on
BC such that AK +LC = KL. A line through the midpoint M of
KL and parallel to BC intersects AC at the point N . Determine
� KNL.

Solution. Through K, draw a line parallel to BC, cutting AC at
D.
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Since triangles AKD and ABC are similar, we have AK = KD.
Since KM = ML. we have

MN =
KD + LC

2
=

AK + LC

2
=

KL

2
= KM = ML.

Hence N lies on the semicircle with diameter KL, so that � KNL =
90◦.

3. Is it possible to cover a 2003 × 2003 board using horizontal 1 × 2
rectangles and vertical 3 × 1 rectangles?

Solution. Colour the vertical columns of the board alternately
black and white. Initially, the difference between the numbers
of black and white squares that are uncovered is 2003. Each
horizontal 1 × 2 rectangle covers one square of each colour, and
cannot affect this difference. Each vertical 3 × 1 rectangle covers
three squares of the same colour, and can either raise or lower this
difference by 3. Since 2003 is not a multiple of 3, not all squares
can be covered.

4. Joannie has a block of chocolate in the shape of an equilateral
triangle of side n, divided into n2 equilateral triangles of side 1 by
lines parallel to the sides of the block. She shares it with Petra
by playing the following game. Joannie begins by breaking off a
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triangular piece of any size along one of the lines, eats it and passes
what remains of the block to Petra. Each takes turns passing the
block of chocolate back and forth. If at any time, it is not possible
to break off a triangular piece, the player whose turn it is loses
immediately. The piece eaten must be an equilateral triangle of
side 1, and whoever eats that wins the game. For each n, determine
whether Joannie or Petra has a winning strategy.

Solution. Joannie cannot eat the whole block unless n = 1, in
which case she wins immediately. For n ≥ 2, she must leave behind
an isosceles trapezoid. Petra must reduce it to a parallelogram. If
she leaves behind a pentagon, Joannie can leave her a hexagon
from which no moves are possible. For the same reason, Joannie
must change the parallelogram back to an isosceles trapezoid.
Eventually, the parallelogram Petra leaves is actually a rhombus,
which Joannie then converts to an isosceles triangle T . If T has side
1, then Petra wins. If n is a prime, the first parallelogram Petra
products will have two sides that are relatively prime to each other,
so that T will have side 1. Thus Petra wins whenever n is a prime.
Suppose n is composite. Then Joannie can make her first isosceles
trapezoid to have equal legs of length equal to the smallest prime
divisor p of n. Then T will have side p. Since it is Petra’s turn
to move, Joannie wins. In summary, Petra wins if and only if n is
prime.

5. C is a point on the circle with diameter AB. K is the midpoint
of the arc BC not containing A, N is the midpoint of the segment
AC, and the line KN intersects the circle again at M . Tangents
to the circle at the points A and C intersect at the point E. Prove
that � EMK = 90◦.

Solution. Let O be the centre of the circle Then OK is
perpendicular to BC and OE is perpendicular to AC. Since
AN = NC and AO = OB, ON is parallel to BC, and hence
perpendicular to AC. It follows that E, N and O are collinear.
Note that both AECO and AMCK are cyclic quadrilaterals.
Hence MN ·NK = AN ·NC = EN ·NO, so that EMOK is also
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a cyclic quadrilateral. It follows that � EMK = � EOK = 90◦.
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6. John chooses an integer greater than 100. Mary calls out an integer
d greater than 1. If John’s integer is divisible by d, then Mary wins.
If not, John subtracts d from his number and the game continues.
Mary is not allowed to call out any number twice. When John’s
number becomes negative, Mary loses. Can Mary play in such a
way as to always win?

Solution. Mary can guarantee a win by calling in succession 2, 3,
4, 6, 16 and 12. Let John’s current number be congruent modulo
12 to k, 0 ≤ k ≤ 11.

If k = 0, 2, 4, 6, 8, 10, Mary wins after calling 2.
If k = 5, 11, Mary wins after calling 3.
If k = 1, 9, Mary wins after calling 4.
If k = 3, Mary wins after calling 6.

If k = 7, after calling 2, 3, 4 and 6 Mary obtains a number congru-
ent to 4 modulo 12. Therefore either Mary wins on her next move
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after calling 16 or after that by calling 12.

The maximum amount that could have been subtracted from
John’s original number is 2+3+4+6+16+12=43. Since it is over
100, Mary has won before the current value of John’s number drops
below 0.

7. A triangle has circumradius R and inradius r. If a is the length of
the longest side while h is the length of the shortest altitude, prove
that R

r > a
h .

Solution. We have 2R > a since no side can be longer than the
diameter of the circumcircle. On the other hand, no altitude can be
shorter than the diameter of the incircle, so that 2r < h. Division
yields the desired result R

r > a
h .

World Wide Web

Information on the Tournament, how to enter it, and its rules are on
the World Wide Web. Information on the Tournament can be obtained
from the Australian Mathematics Trust web site at

http://www.amt.canberra.edu.au
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Books on Tournament Problems

There are four books on problems of the Tournament available.
Information on how to order these books may be found in the Trust’s
advertisement elsewhere in this journal, or directly via the Trust’s web
page.

Please note the Tournament’s postal address in Moscow:

NN Konstantinov
PO Box 68
Moscow 121108
RUSSIA

Andrei Storozhev

Australian Mathematics Trust

University of Canberra ACT 2601

AUSTRALIA.

email: andreis@amt.canberra.edu.au

* * *
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These books are a valuable resource for 
the school library shelf, for students 
wanting to improve their understanding 
and competence in mathematics, and for 
the teacher who is looking for relevant, 
interesting and challenging questions and 
enrichment material.

To attain an appropriate level of achievement 
in mathematics, students require talent in 
combination with commitment and self-
discipline. The following books have been 
published by the AMT to provide a guide 
for mathematically dedicated students and 
teachers.

Useful Problem Solving Books from AMT Publications

AMC Solutions and Statistics
Edited by DG Pederson
This book provides, each year, a record of the 
AMC questions and solutions, and details 
of medallists and prize winners. It also 
provides a unique source of information for 
teachers and students alike, with items such 
as levels of Australian response rates and 
analyses including discriminatory powers 
and difficulty factors.

Australian Mathematics Competition 
Book 1 1978-1984
Edited by W Atkins, J Edwards, D King, 
PJO’Halloran, PLTaylor
This 258 page book consists of over 500  
questions, solutions and statistics from the 
AMC papers of 1978-84. The questions are 
grouped by topic and ranked in order of 
difficulty. The book is a powerful tool for 
motivating and challenging students of 
all levels. A must for every mathematics 
teacher and every school library. 

Australian Mathematics Competitions 
Book 2 1985-1991
Edited by PJ O’Halloran, G Pollard, PJ Taylor
Over 250 pages of challenging questions and 
solutions from the Australian Mathematics 
Competition papers from 1985-1991.

Australian Mathematics Competitions
Book 3 1992-1998 
W Atkins, JE Munro and PJ Taylor 
More challenging questions and solutions 
from the Australian Mathematics 
Competition papers from 1992-1998.

Australian Mathematics Competition 
Book 3 on CD
Programmed by E. Storozhev
This CD contains the same problems and 
solutions as in the corresponding book. 
The problems can be accessed in topics 
as in the book and in this mode is ideal to 
help students practice particular skills. In 
another mode students can simulate writing 
one of the actual papers and determine the 
score that they would have gained. The CD 
runs on all Windows platforms.

Problem Solving Via the AMC
Edited by Warren Atkins
This 210 page book consists of a 
development of techniques for solving 
approximately 150 problems that have
been set in the Australian Mathematics 
Competition. These problems have been 
selected from topics such as Geometry, 
Motion, Diophantine Equations and 
Counting Techniques.

Methods of Problem Solving, Book 1
Edited by JB Tabov, PJ Taylor
This introduces the student aspiring 
to Olympiad competition to particular 
mathematical problem solving techniques. 
The book contains formal treatments 
of methods which may be familiar or 
introduce the student to new, sometimes 
powerful techniques.



Methods of Problem Solving, Book 2 
JB Tabov & PJ Taylor
After the success of Book 1, the authors 
have written Book 2 with the same format 
but five new topics. These are the Pigeon-
Hole Principle, Discrete Optimisation, 
Homothety, the AM-GM Inequality and the 
Extremal Element Principle.

Mathematical Toolchest
Edited by AW Plank & N Williams
This 120 page book is intended for talented 
or interested secondary school students, 
who are keen to develop their mathematical 
knowledge and to acquire new skills. 
Most of the topics are enrichment material 
outside the normal school syllabus, and are 
accessible to enthusiastic year 10 students.

International Mathematics —
Tournament of Towns (1980-1984) 
Edited by PJ Taylor

International Mathematics —
Tournament of Towns (1984-1989) 
Edited by PJ Taylor 

International Mathematics —
Tournament of Towns (1989-1993) 
Edited by PJ Taylor 

International Mathematics —
Tournament of Towns (1993-1997) 
Edited by PJ Taylor 
The International Mathematics Tournament 
of the Towns is a problem solving 
competition in which teams from different 
cities are handicapped according to the 
population of the city. Ranking only behind 
the International Mathematical Olympiad, 
this competition had its origins in Eastern 
Europe (as did the Olympiad) but is now 
open to cities throughout the world. Each 
book contains problems and solutions from 
past papers.

Challenge! 1991 – 1995 
Edited by JB Henry, J Dowsey, A Edwards, 
L Mottershead, A Nakos, G Vardaro  
The Mathematics Challenge for Young 
Australians attracts thousands of entries 
from Australian High Schools annually 
and involves solving six in depth problems 
over a 3 week period. In 1991-95, there 
were two versions – a Junior version for 
Year 7 and 8 students and an Intermediate 
version for Year 9 and 10 students. This 
book reproduces the problems from both 
versions which have been set over the first 
5 years of the event, together with solutions 
and extension questions. It is a valuable 
resource book for the class room and the 
talented student. 

USSR Mathematical Olympiads 
1989 – 1992  
Edited by AM Slinko
Arkadii Slinko, now at the University of 
Auckland, was one of the leading figures 
of the USSR Mathematical Olympiad 
Committee during the last years before 
democratisation. This book brings together 
the problems and solutions of the last 
four years of the All-Union Mathematics 
Olympiads. Not only are the problems and 
solutions highly expository but the book 
is worth reading alone for the fascinating 
history of mathematics competitions to be 
found in the introduction. 

Australian Mathematical Olympiads 
1979 – 1995
H Lausch & PJ Taylor
This book is a complete collection of all 
Australian Mathematical Olympiad papers 
since the first competition in 1979. Solutions 
to all problems are included and in a number 
of cases alternative solutions are offered.



Chinese Mathematics Competitions and 
Olympiads 1981-1993
A Liu
This book contains the papers and solutions 
of two contests, the Chinese National 
High School Competition from 1981-82 to 
1992-93, and the Chinese Mathematical 
Olympiad from 1985-86 to 1992-93. China 
has an outstanding record in the IMO and 
this book contains the problems that were 
used in identifying the team candidates and 
selectiing the Chinese teams. The problems 
are meticulously constructed, many with 
distinctive flavour. They come in all levels 
of difficulty, from the relatively basic to the 
most challenging.

Asian Pacific Mathematics Olympiads 
1989-2000
H Lausch & C Bosch-Giral 
With innovative regulations and procedures, 
the APMO has become a model for regional 
competitions around the world where costs 
and logistics are serious considerations. This 
159 page book reports the first twelve years of 
this competition, including sections on its early 
history, problems, solutions and statistics.

Polish and Austrian Mathematical 
Olympiads 1981-1995
ME Kuczma & E Windischbacher
Poland and Austria hold some of the 
strongest traditions of Mathematical 
Olympiads in Europe even holding a 
joint Olympiad of high quality. This book 
contains some of the best problems from the 
national Olympiads. All problems have two 
or more independent solutions, indicating 
their richness as mathematical problems.

Seeking Solutions
JC Burns
Professor John Burns, formerly Professor of 
Mathematics at the Royal Military College, 
Duntroon and Foundation Member of 
the Australian Mathematical Olympiad 
Committee, solves the problems of the 1988, 

1989 and 1990 International Mathematical 
Olympiads. Unlike other books in which 
only complete solutions are given, John 
Burns describes the complete thought 
processes he went through when solving 
the problems from scratch. Written in 
an inimitable and sensitive style, this 
book is a must for a student planning on 
developing the ability to solve advanced 
mathematics problems.

101 Problems in Algebra
from the Training of the USA IMO Team
Edited by T Andreescu & Z Feng
This book contains one hundred and one 
highly rated problems used in training and 
testing the USA International Mathematical 
Olympiad team. These problems are 
carefully graded, ranging from quite 
accessible towards quite challenging. The 
problems have been well developed and 
are highly recommended to any student 
aspiring to participate at National or 
International Mathematical Olympiads.

Mathematical Contests – Australian Scene  
Edited by AM Storozhev, JB Henry & DC 
Hunt
These books provide an annual record of 
the Australian Mathematical Olympiad 
Committee’s identification, testing and 
selection procedures for the Australian 
team at each International Mathematical 
Olympiad. The books consist of the 
questions, solutions, results and statistics 
for: Australian Intermediate Mathematics 
Olympiad (formerly AMOC Intermediate 
Olympiad), AMOC Senior Mathematics 
Contest, Australian Mathematics Olympiad, 
Asian-Pacific Mathematics Olympiad, 
International Mathematical Olympiad, and 
Maths Challenge Stage of the Mathematical 
Challenge for Young Australians.



WFNMC — Mathematics Competitions
Edited by Warren Atkins
This is the journal of the World Federation 
of National Mathematics Competitions 
(WFNMC). With two issues each of 
approximately 80-100 pages per year, 
it consists of articles on all kinds of 
mathematics competitions from around 
the world.

Parabola
This Journal is published in association 
with the School of Mathematics, University 
of New South Wales. It includes articles 
on applied mathematics, mathematical 
modelling, statistics, and pure mathematics 
that can contribute to the teaching and 
learning of mathematics at the senior 
secondary school level. The Journal’s 
readership consists of mathematics 
students, teachers and researchers with 
interests in promoting excellence in senior 
secondary school mathematics education.

ENRICHMENT STUDENT NOTES
The Enrichment Stage of the Mathematics 
Challenge for Young Australians (sponsored 
by the Dept of Education, Science and 
Training) contains formal course work as 
part of a structured, in-school program. 
The Student Notes are supplied to students 
enrolled in the program along with other 
materials provided to their teacher. We are 
making these Notes available as a text book 
to interested parties for whom the program 
is not available.

Newton Enrichment Student Notes
JB Henry
Recommended for mathematics students 
of about Year 5 and 6 as extension material. 
Topics include polyominoes, arithmetricks, 
polyhedra, patterns and divisibility.

Dirichlet Enrichment Student Notes
JB Henry
This series has chapters on some problem 
solving techniques, tessellations, base 
five arithmetic, pattern seeking, rates and 
number theory. It is designed for students 
in Years 6 or 7.

Euler Enrichment Student Notes
MW Evans and JB Henry
Recommended for mathematics students of 
about Year 7 as extension material. Topics 
include elementary number theory and 
geometry, counting, pigeonhole principle.

Gauss Enrichment Student Notes
MW Evans, JB Henry and AM Storozhev
Recommended for mathematics students of 
about Year 8 as extension material. Topics 
include Pythagoras theorem, Diaphantine 
equations, counting, congruences.

Noether Enrichment Student Notes
AM Storozhev
Recommended for mathematics students 
of about Year 9 as extension material. 
Topics include number theory, sequences, 
inequalities, circle geometry.

Pólya Enrichment Student Notes
G Ball, K Hamann and AM Storozhev
Recommended for mathematics students of 
about Year 10 as extension material. Topics 
include polynomials, algebra, inequalities 
and geometry.



T-SHIRTS
T-shirts celebrating the following 
mathematicians are made of 100% cotton 
and are designed and printed in Australia. 
They come in white, and sizes Medium 
(Polya  and Newton only) and XL.

Leonhard Euler T–shirt
The Leonhard Euler t-shirt depicts a 
brightly coloured cartoon representation of 
Euler’s famous Seven Bridges of Königsberg 
question. 

Carl Friedrich Gauss T–shirt
The Carl Friedrich Gauss t-shirt celebrates 
Gauss’ discovery of the construction of a 17-
gon by straight edge and compass, depicted 
by a brightly coloured cartoon. 

Emmy Noether T–shirt
The Emmy Noether t-shirt shows a 
schematic representation of her work on 
algebraic structures in the form of a brightly 
coloured cartoon. 

George Pólya T–shirt
George Pólya was one of the most significant 
mathematicians of the 20th century, both as 
a researcher, where he made many significant 
discoveries, and as a teacher and inspiration 
to others. This t-shirt features one of 
Pólya’s most famous theorems, the 
Necklace Theorem, which he discovered 
while working on mathematical aspects of 
chemical structure. 

Peter Gustav Lejeune Dirichlet T–shirt
Dirichlet formulated the Pigeonhole Principle, 
often known as Dirichlet’s Principle, which 
states: “If there are p pigeons placed in 
h holes and p>h then there must be at 
least one pigeonhole containing at least 2 
pigeons.”  The t-shirt has a bright cartoon 
representation of this principle. 

Alan Mathison Turing T-shirt
The Alan Mathison Turing t-shirt depicts 
a colourful design representing Turing’s 
computing machines which were the first 
computers.  

Sir Isaac Newton T-shirt
The T Shirt features Sir Isaac Newton 
together with an apple which is claimed, 
after falling from a tree, inspired Sir Isaac 
to discover the laws of motion and gravity 
which bear his name. Sir Isaac made a 
major contribution to mathematics as co-
developer of the Calculus. This is honoured 
in the T shirt by showing acceleration 
(s with two dots on top) as the second 
derivative of distance. The law depicted in 
the equation is known as Newton’s second 
law of motion, Force equals mass times 
acceleration. 



ORDER FORM AMT PUBLICATIONS 
PRICES VALID TO 31 DECEMBER 2003

                                                             TITLES                                                            QTY   UNIT PRICE   TOTAL
  BUNDLES OF PAST AMC PAPERS (10 identical papers per bundle)
                          1998         1999         2000          2001             2002                           @ $A9.90
  Junior                                                                                                                             per
  Intermed                                                                                                                     bundle
  Senior
  AMC Solutions and Statistics (indicate quantity in box)
  1993 �  1994 �  1995 �  1996 �   1997 �  1998 �                              @ $A22.00
  1999 �  2000 �  2001 �  2002 �  
  AMC Solutions and Statistics 2003*                                                                   @ $A26.95

  Australian Mathematics Competition Book 1 1978-1984                                 @ $A33.00

  Australian Mathematics  Book 2 1985-1991                                                       @ $A33.00

  Australian Mathematics Competition Book 3 1992-1998                                 @ $A33.00

  Australian Mathematics Competiton Book 3 on CD                                        @ $A33.00

  Problem Solving via the AMC                                                                             @ $A33.00

  Methods of Problem Solving, Book 1                                                                                @ $A33.00 

  Methods of Problem Solving, Book 2                                                                                @ $A33.00

  Mathematical Toolchest                                                                                        @ $A33.00

  Tournament of Towns (indicate quantity in box)                                             @ $A33.00

  1980–’84 � 1984–’89 � 1989–’93 � 1993–’97 �                                 @ $A33.00

  Challenge! 1991-1995 @ $A33.00

  USSR Mathematical Olympiads 1989-1992 @ $A33.00

  Australian Mathematical Olympiads 1979–1995                                              @ $A33.00

  Chinese Mathematics Competitions & Olympiads 1981-1993                       @ $A33.00

  Asian Pacific Mathematics Olympiads 1989-2000                                            @ $A33.00

  Polish and Austrian Mathematical Olympiads 1981-1995                              @ $A33.00

  Seeking Solutions                                                                                                   @ $A33.00

  101 Algebra Problems                                                                                           @ $A33.00

  MATHEMATICAL CONTESTS - AUSTRALIAN SCENE
  (indicate quantity in box)                                                                                   

  1993 �  1994 �  1995 �  1996 �  1997 �  1998 �                               @ $A22.00

  1999 �  2000 �  2001 �                  

  MATHEMATICAL CONTESTS - AUSTRALIAN SCENE 2002                                         @ $A26.95

                                                                                                            continued next page  



ORDER FORM AMT PUBLICATIONS – CONTINUED
                                                                                           QTY  UNIT PRICE    TOTAL
  WFNMC Mathematics Competitions 
  (indicate quantity in box)

1988 (Volume 1)           No.1 �     No.2 �                                 @ $A22.00 ea

1989 (Volume 2)           No.1 �     No.2 �                                  @ $A22.00 ea

1990 (Volume 3)           No.1 �     No.2 �                                 @ $A22.00 ea

1991 (Volume 4)           No.1 �     No.2 �                                 @ $A22.00 ea 
1992 (Volume 5)          No.1 �     No.2 �                                     @ $A22.00 ea

1993 (Volume 6)           No.1 �     No.2 �                                 @ $A22.00 ea

1994 (Volume 7)           No.1 �     No.2 �                                 @ $A22.00 ea

1995 (Volume 8)           No.1 �     No.2 �                                 @ $A22.00 ea

1997 (Volume 10)         No.1 �     No.2 �                                 @ $A22.00 ea

1998 (Volume 11)         No.1 �     No.2 �                                 @ $A22.00 ea 

1999 (Volume 12)         No.1 �     No.2 �                                 @ $A22.00 ea

2000 (Volume 13)         No.1 �     No.2 �                                 @ $A26.95 ea

2001 (Volume 14)         No.1 �     No.2 �                                 @ $A26.95 ea
Parabola 2002 Vol 38, No 2                                                                    @ $A9.35 ea
ENRICHMENT STUDENT NOTES (indicate quantity in box)                             
Newton �   Dirichlet �   Euler �                                @ $A33.00 ea
Gauss �   Noether �   Pólya �                                                            

T-SHIRTS (indicate quantity required in box) 

Euler XL �   Gauss XL �   Noether XL �                                  @ $A24.20 ea

Pólya M � Pólya XL �   Dirichlet XL �  
Turing XL � Newton M � Newton XL �                                                 
OVERSEAS POSTAGE: For postage and handling outside Australia add $A12.00 
for first item and $A5.00 for each additional item.

                                                                Total $A
 
* Available from January 2004
Please note that all WFNMC Journals are available only while stocks last. 
Australian Mathematics Trust is registered for GST  ABN: 39 120 172 502
©2003 AMT Publishing  AMTT Limited ACN 083 950 341  



PAYMENT DETAILS AMT PU B L I C A T I O N S

TOTAL COST OF BOOKS ORDERED                     
$A 

All payments (cheques/bank drafts etc) should be in Australian currency, made payable 
to “Australian Mathematics Trust” and sent to:

Australian Mathematics Trust
University of Canberra ACT 2601
AUSTRALIA
Ph: +61 2 6201 5137 Fax: +61 2 6201 5052

PLEASE FORWARD PUBLICATIONS TO:

NAME:  

ADDRESS:  

STATE/COUNTRY:                                                                     POSTCODE:  

TOTAL Cheque/Bankdraft enclosed for    $A                        

Please Note: 
*    The AMT regrets that orders cannot be accepted without attached payment. 
*    The above prices are valid to 31 Dec 2003. 

CREDIT CARD MAIL ORDER AUTHORITY 
Please charge my:

�  Bankcard       �  Visa                 �  Mastercard �  Amex

Card Number ����  ����  ����  ����
Amount Authorised $A  

Cardholder’s Name 
(as shown on card)

Cardholder’s Signature 

Expiry Date:                                  Date:                                  Ph (bh) 



The Australian Mathematics Trust
The Trust, of which the University of Canberra is Trustee, is a non-profit 
organisation whose mission is to enable students to achieve their full intellectual 
potential in mathematics. Its strengths are based upon its:

• network of dedicated mathematicians and teachers who work in a voluntary 
capacity supporting the activities of the Trust;

• quality, freshness and variety of its questions in the Australian Mathematics 
Competition, the Mathematics Challenge for Young Australians, and other 
Trust contests;

• production of valued, accessible mathematics materials; 
• dedication to the concept of solidarity in education;
• credibility and acceptance by educationalists and the community in general 

whether locally, nationally or internationally; and
• close association with the Australian Academy of Science and professional 

bodies.




