






Mathematics Competitions Vol 27 No 2 2014

28,800 Extremely Magic 5× 5 Squares

Arthur Holshouser & Harold Reiter

Arthur Holshouser has had a lifelong
passion for doing mathematics. He
works on problems at least 5 hours each
day and often much more. His favorites
are plane geometry, polynomial alge-
bra, combinatorial games, and num-
ber theory. His current passion is Bro-
card geometry and Poincelet polygons.
His partnership with Harold Reiter has
produced more than 50 articles.

As Harold Reiter completes his 51st
year of teaching, his passion for light-
ing mathematical fires has continued to
grow. In the past few years, he has
enjoyed working with Indian children
in Bangalore, Indonesian children and
teachers, Navajo children, Saudi teach-
ers and very young gifted students at
Epsilon Camp in the United States. He
spends time creating challenges includ-
ing puzzles like KenKen (with modulo
6 or 7 arithmetic and with prime num-
ber entries). He continues to work with
longtime coauthor Arthur Holshouser,
on papers in number theory, geometry,
and polynomial algebra.

1 Abstract

Using an algorithm from the paper “Creating Semi-Magic, Magic and
Extra Magic n × n Squares when n is Odd”, we define 28, 800 extra
magic (or panmagic) 5 × 5 squares. We show that these 5 × 5 extra
magic squares are also extremely magic. This means that all of these
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28, 800 extra magic 5 × 5 squares have the same 120 magic 5 element
subsets whose sum is 65. Of course, these subsets include the 5 rows and
5 columns and the 10 generalized diagonals. We also discuss additional
magic properties. We also define 28, 800 similarity mappings on these
5 × 5 extremely magic squares that map these 120 magic 5 element
subsets onto each other. As always, these 28, 800 similarity mappings
form a group. If we use any one of the 5 × 5 extremely magic squares
as the domain and use any other as the range then the function that
we create will be one of these 28, 800 similarity mappings. Thus, we
can loosely say that the 28, 800 magic squares themselves form a group.
However, the graph of a group is a more accurate term.

At the end, we state a variation of Hall’s Marriage Theorem that can
greatly enhance this paper. Much of this paper can be generalized, but
the 5× 5 magic squares have properties that are unique.

2 Introduction

Using an algorithm developed in the paper “Creating Semi-Magic, Magic
and Extra Magic n×n Squares when n is Odd”, we define the following
5× 5 Matrix. All the results of this paper are derived from this matrix.
Throughout this paper, we use the term line to mean any of the 20 rows,
columns, and generalized diagonals.

(a0, A0) (a1, A1) (a2, A2) (a3, A3) (a4, A4)
(a3, A2) (a4, A3) (a0, A4) (a1, A0) (a2, A1)
(a1, A4) (a2, A0) (a3, A1) (a4, A2) (a0, A3)
(a4, A1) (a0, A2) (a1, A3) (a2, A4) (a3, A0)
(a2, A3) (a3, A4) (a4, A0) (a0, A1) (a1, A2)

Figure 1: A 5× 5 Matrix

Note that this matrix contains all the ordered pairs (ai, Aj), i =
0, 1, 2, . . . , 4, j = 0, 1, 2, . . . , 4. We can also define the dual 5× 5 matrix
where we change each (ai, Aj) in Fig. 1 to (aj , Ai). Thus, the second
row of the dual matrix would read (a2, A3), (a3, A4), (a4, A0), (a0, A1),
(a1, A2). In Fig. 1 we agree that a0, a1, a2, a3, a4 is any arbitrary but
fixed permutation of the integers 0, 1, 2, 3, 4. Also, A0, A1, A2, A3, A4 is
any arbitrary but fixed permutation of 0, 1, 2, 3, 4.
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In Fig. 1, if we permute a0, a1, a2, a3, a4 in all possible ways and permute
A0, A1, A2, A3, A4 in all possible ways we can define 5! · 5! = 14, 400
different 5× 5 matrices.

For each ordered pair (ai, Aj) in Fig. 1, let us assign the number

(ai, Aj)
#

= ai + 5 (Aj − 1) where ai, Aj are the numerical values that
have been assigned to ai, Aj .

Now 1 ≤ ai ≤ (ai, Aj)
#
= ai + 5 (Aj − 1) ≤ 5 + 5 (5− 1) = 52. That is,

1 ≤ (ai, Aj)
# ≤ 25.

We now show that (ai, Aj)
#

= (ak, Ae)
#

if and only if ai = ak and
Aj = Ae.

First, suppose Aj �= Ae and by symmetry suppose Aj < Ae. We

show that (ai, Aj)
#

< (ak, Ae)
#
. That is, we show (ai, Aj)

#
= ai +

5 (Aj − 1) < ak+5 (Ae − 1) = (ak, Ae)
#
. This is equivalent to ai−ak <

5 (Ae −Aj) .

Since ai, Aj , ak, Ae ∈ {0, 1, 2, 3, 4} and Aj < Ae we see that ai − ak <
5 ≤ 5 (Ae −Aj). Therefore, ai − ak < 5 (Ae −Aj).

If Aj = Ae then obviously (ai, Aj)
#

= (ak, Ae)
#

if and only if ai = ak.

Therefore, (ai, Aj)
#
= (ak, Ae)

#
if and only if ai = ak and Aj = Ae.

From this we see that
{
(ai, Aj)

#
: ai, Aj ∈ {0, 1, 2, 3, 4}

}
= {1, 2, 3, 4, · · · , 25}

since the matrix contains all the ordered pairs (ai, Aj), i = 0, 1, 2, . . . , 4,
j = 0, 1, 2, . . . , 4. Thus, we can place 1, 2, 3, · · · , 25 in the 5× 5 matrix.
Let us now observe the following about Fig. 1, namely that each row
contains each of a0, a1, a2, a3, a4 and contains each of A0, A1, A2, A3, A4.
Also, each column contains each of a0, a1, a2, a3, a4 and contains each
of A0, A1, A2, A3, A4. Also, each of the two main diagonals and each of
the 8 generalized diagonals contains each of a0, a1, a2, a3, a4 and contains
each of A0, A1, A2, A3, A4.

Note that there are 10 generalized diagonals in Fig. 1 when we count
the two main diagonals. One example of a generalized diagonal is the
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set {(a1, A1) , (a0, A4) , (a4, A2) , (a3, A0) , (a2, A3)}. Another example
is {(a1, A1) , (a3, A2) , (a0, A3) , (a2, A4) , (a4, A0)}. If we use the code

(ai, Aj)
#
= ai + 5 (Aj − 1) we now show that the sum of the 5 numbers

in each row, in each column and in each generalized diagonal equals to
1
5 (1 + 2 + · · ·+ 25) = 25

10 (26) = 65. This means that the 5 × 5 Matrix
of Fig. 1 becomes an extramagic (or panmagic) 5× 5 square.

For example, the sum of the 5 numbers in the 1st main diagonal equals

(a0, A0)
#
+ (a4, A3)

#
+ (a3, A1)

#
+ (a2, A4)

#
+ (a1, A2)

#

= [a0 + 5 (A0 − 1)] + · · ·+ [a1 + 5 (A2 − 1)]

=
4∑

i=0

ai + 5

4∑
i=0

Ai − 5 · 5

=

5∑
i=1

i+ 5
4∑

i=0

i− 5 · 5

= 15 + 5 · 15− 25

= 65,

since {a0, a1, a2, a3, a4} = {A0, A1, A2, A3, A4} = {0, 1, 2, 3, 4}. This
reasoning is the same for all lines.

3 A Specific Example

In Fig. 1, we now let (a0, a1, a2, a3, a4) = (3, 5, 1, 2, 4) and (A0, A1,

A2, A3, A4) = (2, 1, 5, 4, 3). Using the code (ai, Aj)
#

= ai + 5 (Aj − 1)
we have the extra magic 5× 5 square of Fig. 2.

8 5 21 17 14
22 19 13 10 1
15 6 2 24 18
4 23 20 11 7
16 12 9 3 25

Figure 2: An Extra Magic 5× 5 square
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The magic 5×5 square of Fig. 2 is actually extremely magic and we show
later how to use this extremely magic 5 × 5 square to generate 28, 800
different, extremely magic 5× 5 squares.

Note 1. Suppose that instead of using the integers 1 though 25, we are
interested in putting any numbers a1, a2, . . . , a25 in the 25 positions of
the 5× 5 matrix so that the sum of the 5 numbers in each row, column,
and generalized diagonal is the same. This leads to a system of linear
equations in the variables a1, a2, . . . , a25. Professor Ben Klein has shown
that the rank of this system of linear equations is 16. Thus, it is possible
to find a subset of nine letters ai1 , ai2 , . . . , ai9 , and arbitrarily specify the
values of these nine letters. Then we can compute the unique values of
the other 16 letters in terms of the 9 given letters. In the 5×5 matrix of
Fig. 1, let us now use the code (ai, Aj)

# = ai +Aj and then place these
values (ai, Aj)

# in the 5× 5 matrix. We note from Fig. 1 that the sum
of the 5 numbers on each line is always the same value

4∑
i=0

ai +

4∑
i=0

Ai.

Now (ai, Aj)
# = ai + Aj = (ai + x,Aj − x)#. Therefore, if we replace

each ai by ai+x and replace each Aj by Aj −x, we see that (ai, Aj)
# =

ai + Aj = (ai + x,Aj − x)#. Thus, there is no loss in generality to
always let a0 = 0. Therefore there are nine degrees of freedom among
the ten letters a0, a1, . . . , a4, A0, A1, . . . , A4, since a0 = 0. Given that
the rank of the 5 × 5 matrix in Fig. 1 is 16, it is straightforward to
show that the 5× 5 matrix of Fig. 1 with the code (ai, Aj)

# = ai + Aj

where a0 = 0 and where a1, a2, a3, a4, A0, . . . , A4 vary over the set of
numbers, will give all of the 5 × 5 matrices with a common sum for
all lines. The panmagic square below is one example of the attractive
mathematics we can create from this theory. If we add A to each of the
25 squares, we will have 9 independent variables and we can easily find
a0 = 0, a1, a2, . . . , a4, A0, A1, . . . , A4 that will realize these 9 independent
variables

0 B+I C+H D+G E+F
D+H E+G F B C+I
B+F C D+I E+H G
E+I H B+G C+F D
C+G D+F E I B+H
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is an extra magic 5×5 square, where B,C,D,E, F,G,H, I are arbitrary,
and the common sum is B + C +D + E + F +G+H + I.

4 The Extreme Magicness of Figures 1 and 2

In this section, we derive the extreme magicness of Fig. 1 and 2. From
Note 1 it will then be self-evident that any panmagic 5 × 5 square will
also be extremely magic. This is stated in [3], but it is not derived in
[3]. Also the proof in [3] is far from self-evident.

In the rest of this paper, we assume that (a0, a1, a2, a3, a4) and (A0, A1,
A2, A3, A4) have been arbitrarily fixed by Fig. 2. In Fig. 1, let us
now permute A0, A1, A2, A3, A4 in all possible ways to create 120 dif-
ferent 5 element sets of ordered pairs {(a0, Ai0) , (a1, Ai1) , (a2, Ai2) ,
(a3, Ai3) , (a4, Ai4)}.

Thus, one example would be the 5 element set
{
(a0, A1) , (a1, A2) ,

(a2, A4) , (a3, A0) , (a4, A3)
}
. These 120 5-element sets of ordered pairs

will define 120 different 5 element subsets of the Fig. 1 matrix. When
we use the code (ai, Aj)

#
= ai + 5 (Aj − 1), each of these 120 differ-

ent 5 element subsets of the Fig. 1 matrix will be a magic 5 element
subset of the Fig. 1 matrix since the sum of the 5 elements in the set
will be equal to 65. This follows since each of these 120 different 5 el-
ement subsets of Fig. 1 will contain each of the letters a0, a1, a2, a3, a4
and contain each of the letters A0, A1, A2, A3, A4 and since the code is
(ai, Aj)

#
= ai + 5 (Aj − 1) .

Also, of course, {a0, a1, a2, a3, a4} = {0, 1, 2, 3, 4} and {A0, A1, A2, A3,
A4} = {0, 1, 2, 3, 4} .

After we go through all of the 120 sets
{
(a0, Ai0) , (a1, Ai1) , (a2, Ai2) ,

(a3, Ai3) , (a4, Ai4)
}
we have the classification of the 120 magic 5 element

subsets of Fig. 1 that is shown below. In these drawings, we also state
the number of times that each magic 5 element configuration appears in
Fig. 1. We note that there are 16 different configurations that are listed
below and most of these 16 configurations can appear many times in the
5× 5 matrix of Fig. 1. For example, the configuration of drawing G can
appear 16 times in the 5× 5 matrix of Fig. 1.
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We note that the sum of the numbers in these 16 drawings equals 120
which means that these configurations appear 120 times in Figs. 1, 2.
We also note that every time that one of the 16 configurations appears
in Fig. 1 this set of 5 elements will contain all of a0, a1, a2, a3, a4 and
contain all of A0, A1, A2, A3, A4. These 120 subsets of Fig. 1 are also the
only 5 elements subsets of Fig. 1 that contain all of a0, a1, a2, a3, a4 and
contain all of A0, A1, A2, A3, A4. Also, these 120 subsets of Fig. 1 are
the only five-element subsets of Fig. 1 such that each pair of points in
the set lie on a line.

We note that drawing A represents the horizontal rows and vertical
columns for a total of 10. Also, drawing N represents the two main
diagonals for a total of 2. Also, drawings O, P together represent the 8
generalized diagonals for a total of 8.

Let us now focus our attention on drawing E. This configuration appears
4 times in Figs. 1, 2. These are

{(a0, A0) , (a1, A1) , (a3, A2) , (a4, A4) , (a2, A3)} = {8, 5, 22, 14, 16} ,
{(a2, A3) , (a4, A1) , (a3, A4) , (a0, A0) , (a1, A2)} = {16, 4, 12, 8, 25} ,
{(a1, A2) , (a0, A1) , (a3, A0) , (a2, A3) , (a4, A4)} = {25, 3, 7, 16, 14} ,
{(a4, A4) , (a2, A1) , (a3, A3) , (a1, A2) , (a0, A0)} = {14, 1, 17, 25, 8} .

Note 1. Each of these four 5 element subsets contain all of a0, a1, a2, a3,
a4 and contain all of A0, A1, A2, A3, A4 and the sum of the 5 numbers
in each of these four 5 element subsets is always 65. The sum of the 5
elements in each of the 120 magic subsets will always equal 65.

In Section 10, we state that a variation of Hall’s Marriage Theorem can
be used to show that these 5 × 5 extremely magic squares are actually
much more magic than what we have studied in this section. However,
we consider Hall’s Marriage Theorem to be outside of the scope of this
paper. So in Section 10 we state these results without proof. In Section
11, we state a variation of Hall’s Marriage Theorem.
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the set lie on a line.

We note that drawing A represents the horizontal rows and vertical
columns for a total of 10. Also, drawing N represents the two main
diagonals for a total of 2. Also, drawings O, P together represent the 8
generalized diagonals for a total of 8.

Let us now focus our attention on drawing E. This configuration appears
4 times in Figs. 1, 2. These are

{(a0, A0) , (a1, A1) , (a3, A2) , (a4, A4) , (a2, A3)} = {8, 5, 22, 14, 16} ,
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{(a4, A4) , (a2, A1) , (a3, A3) , (a1, A2) , (a0, A0)} = {14, 1, 17, 25, 8} .

Note 1. Each of these four 5 element subsets contain all of a0, a1, a2, a3,
a4 and contain all of A0, A1, A2, A3, A4 and the sum of the 5 numbers
in each of these four 5 element subsets is always 65. The sum of the 5
elements in each of the 120 magic subsets will always equal 65.

In Section 10, we state that a variation of Hall’s Marriage Theorem can
be used to show that these 5 × 5 extremely magic squares are actually
much more magic than what we have studied in this section. However,
we consider Hall’s Marriage Theorem to be outside of the scope of this
paper. So in Section 10 we state these results without proof. In Section
11, we state a variation of Hall’s Marriage Theorem.
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Note 2. There is a large number of other properties embedded in the
panmagic 5 × 5 square of Fig. 1 when we use the code (ai, Aj)

#
=

ai+5 (Aj − 1) or (ai, Aj)
#
= ai+Aj . Consider for example, the two sets

of doubleton entries {(a1, A2), (a3, A4)} and {(a1, A4), (a3, A2)}. Now

(a1, A2)
#
+ (a3, A4)

#
= (a1, A4)

#
+ (a3, A2)

#
= (a1 + a3) + (A2 +A4).

Therefore, in any panmagic 5×5 square, these two doubleton sums must
always be equal. Thus, in Fig.2 we see that 12 + 25 = 22 + 15 = 37. In
Fig. 1, consider the 5 element sets

{
(a1, A2), (a0, A1), (a2, A3), (a1, A0),

(a3, A4)
}
and {(a1, A4), (a0, A2), (a2, A1), (a1, A3), (a3, A0)}. It is obvi-

ous that the sum of the 5 elements in each of these two sets is the same.
Thus, in Fig. 2, we see that 25+3+16+10+12 = 15+23+1+20+7 = 66.
Reference [3] does not mention these properties.

5 Similarity Mappings on the Fig. 1 Matrix

Remember that a0, a1, a2, a3, a4 and A0, A1, A2, A3, A4 can be any ar-
bitrary permutations of the integers 0, 1, 2, 3, 4. In this paper we have
agreed that a0, a1, a2, a3, a4 and A0, A1, A2, A3, A4 have been fixed by
Fig. 2.

In the Fig. 1 matrix, we note that a0, a1, a2, a3, a4 can be permuted
in 5! = 120 different ways and A0, A1, A2, A3, A4 can be permuted in
5! = 120 different ways. Thus, we can use Fig. 1 to define 120 · 120 =
14, 400 different arrangements (or permutations) of the 25 ordered pairs
{(ai, Aj) : i, j ∈ {0, 1, 2, 3, 4}} .

Each of these arrangements (or permutations) will define an extremely
magic 5 × 5 square and each of these magic 5 × 5 squares will have the
common 120 magic 5 element subsets that are listed in Section 4.

We observe that the arrangement of the five (ai, Aj)’s in the top row of
Fig. 1 will completely determine the arrangement (or permutation) of
all 25 (ai, Aj)’s in Fig. 1. For example, if the top row of Fig. 1 reads
(a1, A0) , (a3, A4) , (a0, A3) , (a4, A1) , (a2, A2) we know that we are using

the permutations

[
a0, a1, a2, a3, a4
a1, a3, a0, a4, a2

]
and

[
A0, A1, A2, A3, A4

A0, A4, A3, A1, A2

]
. These

permutations determine all 25 entries in the Fig. 1 matrix and these 25
entries are shown in Fig. 3.
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(a1, A0) (a3, A4) (a0, A3) (a4, A1) (a2, A2)
(a4, A3) (a2, A1) (a1, A2) (a3, A0) (a0, A4)
(a3, A2) (a0, A0) (a4, A4) (a2, A3) (a1, A1)
(a2, A4) (a1, A3) (a3, A1) (a0, A2) (a4, A0)
(a0, A1) (a4, A2) (a2, A0) (a1, A4) (a3, A3)

Figure 3: A Similarity Mapping of Fig. 1

These 14, 400 permutations form a group of similarity mappings on the
5 × 5 magic square of Fig. 1 and we explain this in a moment. The
group structure of the 14, 400 permutations is S5 × S5 where S5 is the
symmetric group on {0, 1, 2, 3, 4}. We go deeper into this in Section 6.
We will also soon show why these 14, 400 permutations of Fig. 1 are
similarity mappings on the magic squares.

Suppose, x1, x2, x3, x4, x5 and x̄1, x̄2, x̄3, x̄4, x̄5 are any arbitrary magic
5 element subsets of the Fig. 1 matrix whose elements x1, x2, x3, x4, x5

and x̄1, x̄2, x̄3, x̄4, x̄5 are listed in any arbitrary order. It is easy to see
that we can choose permutations

[
a0, a1, a2, a3, a4
ai0, ai1, ai2, ai3, ai4

]
and

[
A0, A1, A2, A3, A4

Aj0, Aj1, Aj2, Aj3, Aj4

]

so that the corresponding similarity mapping f will map f
(
{x1, x2, x3,

x4, x5}
)
= {x̄1, x̄2, x̄3, x̄4, x̄5} with f (xi) = x̄i for all i = 0, 1, 2, 3, 4. We

also note that the permutations
[
a0, a1, a2, a3, a4
a4, a2, a0, a3, a1

]
and

[
A0, A1, A2, A3, A4

A4, A1, A3, A0, A2

]

will define a similarity mapping f that rotates the Fig. 1 matrix 90◦

counterclockwise.

We can also show that there are no permutations

[
a0, a1, a2, a3, a4
ai0, ai1, ai2, ai3, ai4

]

and

[
A0, A1, A2, A3, A4

Aj0, Aj1, Aj2, Aj3, Aj4

]
that will flip the matrix of Fig. 1 over.

The dual matrix of Fig. 1 is needed to flip Fig. 1 over.

In Fig. 4 we have numbered the squares of Fig. 1 1, 2, 3, · · · , 25. Thus,
1 = (a0, A0) , 2 = (a1, A1) , 3 = (a2, A2), etc.
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Note 2. There is a large number of other properties embedded in the
panmagic 5 × 5 square of Fig. 1 when we use the code (ai, Aj)

#
=

ai+5 (Aj − 1) or (ai, Aj)
#
= ai+Aj . Consider for example, the two sets

of doubleton entries {(a1, A2), (a3, A4)} and {(a1, A4), (a3, A2)}. Now

(a1, A2)
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+ (a3, A4)
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= (a1, A4)

#
+ (a3, A2)
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= (a1 + a3) + (A2 +A4).

Therefore, in any panmagic 5×5 square, these two doubleton sums must
always be equal. Thus, in Fig.2 we see that 12 + 25 = 22 + 15 = 37. In
Fig. 1, consider the 5 element sets
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(a1, A2), (a0, A1), (a2, A3), (a1, A0),

(a3, A4)
}
and {(a1, A4), (a0, A2), (a2, A1), (a1, A3), (a3, A0)}. It is obvi-

ous that the sum of the 5 elements in each of these two sets is the same.
Thus, in Fig. 2, we see that 25+3+16+10+12 = 15+23+1+20+7 = 66.
Reference [3] does not mention these properties.

5 Similarity Mappings on the Fig. 1 Matrix

Remember that a0, a1, a2, a3, a4 and A0, A1, A2, A3, A4 can be any ar-
bitrary permutations of the integers 0, 1, 2, 3, 4. In this paper we have
agreed that a0, a1, a2, a3, a4 and A0, A1, A2, A3, A4 have been fixed by
Fig. 2.

In the Fig. 1 matrix, we note that a0, a1, a2, a3, a4 can be permuted
in 5! = 120 different ways and A0, A1, A2, A3, A4 can be permuted in
5! = 120 different ways. Thus, we can use Fig. 1 to define 120 · 120 =
14, 400 different arrangements (or permutations) of the 25 ordered pairs
{(ai, Aj) : i, j ∈ {0, 1, 2, 3, 4}} .

Each of these arrangements (or permutations) will define an extremely
magic 5 × 5 square and each of these magic 5 × 5 squares will have the
common 120 magic 5 element subsets that are listed in Section 4.

We observe that the arrangement of the five (ai, Aj)’s in the top row of
Fig. 1 will completely determine the arrangement (or permutation) of
all 25 (ai, Aj)’s in Fig. 1. For example, if the top row of Fig. 1 reads
(a1, A0) , (a3, A4) , (a0, A3) , (a4, A1) , (a2, A2) we know that we are using

the permutations

[
a0, a1, a2, a3, a4
a1, a3, a0, a4, a2

]
and

[
A0, A1, A2, A3, A4

A0, A4, A3, A1, A2

]
. These

permutations determine all 25 entries in the Fig. 1 matrix and these 25
entries are shown in Fig. 3.
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Figure 3: A Similarity Mapping of Fig. 1

These 14, 400 permutations form a group of similarity mappings on the
5 × 5 magic square of Fig. 1 and we explain this in a moment. The
group structure of the 14, 400 permutations is S5 × S5 where S5 is the
symmetric group on {0, 1, 2, 3, 4}. We go deeper into this in Section 6.
We will also soon show why these 14, 400 permutations of Fig. 1 are
similarity mappings on the magic squares.

Suppose, x1, x2, x3, x4, x5 and x̄1, x̄2, x̄3, x̄4, x̄5 are any arbitrary magic
5 element subsets of the Fig. 1 matrix whose elements x1, x2, x3, x4, x5

and x̄1, x̄2, x̄3, x̄4, x̄5 are listed in any arbitrary order. It is easy to see
that we can choose permutations

[
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]
and

[
A0, A1, A2, A3, A4

Aj0, Aj1, Aj2, Aj3, Aj4

]

so that the corresponding similarity mapping f will map f
(
{x1, x2, x3,

x4, x5}
)
= {x̄1, x̄2, x̄3, x̄4, x̄5} with f (xi) = x̄i for all i = 0, 1, 2, 3, 4. We

also note that the permutations
[
a0, a1, a2, a3, a4
a4, a2, a0, a3, a1

]
and

[
A0, A1, A2, A3, A4

A4, A1, A3, A0, A2

]

will define a similarity mapping f that rotates the Fig. 1 matrix 90◦

counterclockwise.

We can also show that there are no permutations

[
a0, a1, a2, a3, a4
ai0, ai1, ai2, ai3, ai4

]

and

[
A0, A1, A2, A3, A4

Aj0, Aj1, Aj2, Aj3, Aj4

]
that will flip the matrix of Fig. 1 over.

The dual matrix of Fig. 1 is needed to flip Fig. 1 over.

In Fig. 4 we have numbered the squares of Fig. 1 1, 2, 3, · · · , 25. Thus,
1 = (a0, A0) , 2 = (a1, A1) , 3 = (a2, A2), etc.
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1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Figure 4: Numbering the 25 squares

Of course, each of the 14, 400 permutations that we have defined will
define a permutation on the Fig. 4 matrix. Each permutation will be
a similarity mapping on the 5 × 5 matrix in the sense that it maps the
120 magic 5 element subsets of the matrix onto each other. This fact
by itself would imply that each mapping of Figs. 1, 2, 4 would produce
an extremely magic 5× 5 square from any extremely magic 5× 5 square
and all such magic squares would have the same 120 magic 5 element
subsets. The similarity mappings on any structure always form a group.

From Note 1 it is obvious that any panmagic 5×5 square is also extremely
magic. Thus, these 14400 permutations would produce a panmagic 5×5
square from any panmagic 5× 5 square. Reference [3] does not mention
these similarity mappings.

6 A Basis for the Similarity Mappings

As stated in Section 5, the arrangement of the five (ai, Aj)’s in the top
row of Fig. 1 will completely determine the arrangement (or permu-
tation) of all 25 (ai, Aj)’s in Fig. 1. Now the arrangement of the five
(ai, Aj)’s in the top row of Fig. 1 will be determined by the two permu-

tations.

[
a0, a1, a2, a3, a4
ai0, ai1, ai2, ai3, ai4

]
and

[
A0, A1, A2, A3, A4

Aj0, Aj1, Aj2, Aj3, Aj4

]
.

A basis for the 14, 400 member group of similarity mappings that we
are dealing with would be f01, f12, f23, f34 and g01, g12, g23, g34 where
fi,i+1 is the permutation of Figs. 1, 4 that is defined by interchanging
ai, ai+1 and gi,i+1 is the permutation of Figs. 1, 4 that is defined by
interchanging Ai, Ai+1.

We now list these basic permutations.
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9 24 3 4 5
6 7 11 1 10
8 12 13 14 18
16 25 15 19 20
21 22 23 2 17

1 10 25 4 5
6 7 8 12 2
19 9 13 14 15
16 17 21 11 20
18 22 23 24 3

f01, a0 − a1 f12, a1 − a2

1 2 6 21 5
3 7 8 9 13
11 20 10 14 15
16 17 18 22 12
4 19 23 24 25

1 2 3 7 22
14 4 8 9 10
11 12 16 6 15
13 17 18 19 23
21 5 20 24 25

f23, a2 − a3 f34, a3 − a4

24 9 3 4 5
6 7 8 2 12
11 10 20 14 15
23 17 18 19 13
21 22 16 1 25

1 25 10 4 5
13 7 8 9 3
11 12 6 16 15
14 24 18 19 20
21 22 23 17 2

g01, A0 −A1 g12, A1 −A2

1 2 21 6 5
4 14 8 9 10
11 12 13 7 17
16 15 25 19 20
3 22 23 24 18

1 2 3 22 7
6 5 15 9 10
18 12 13 14 8
16 17 11 21 20
19 4 23 24 25

g23, A2 −A3 g34, A3 −A4

1 2 3 4 5
21 22 23 24 25
16 17 18 19 20
11 12 13 14 15
6 7 8 9 10

h
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Figure 4: Numbering the 25 squares
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ai0, ai1, ai2, ai3, ai4

]
and

[
A0, A1, A2, A3, A4

Aj0, Aj1, Aj2, Aj3, Aj4

]
.

A basis for the 14, 400 member group of similarity mappings that we
are dealing with would be f01, f12, f23, f34 and g01, g12, g23, g34 where
fi,i+1 is the permutation of Figs. 1, 4 that is defined by interchanging
ai, ai+1 and gi,i+1 is the permutation of Figs. 1, 4 that is defined by
interchanging Ai, Ai+1.

We now list these basic permutations.
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We discuss the permutation h in a moment. It is obvious that f2
i,i+1 =

fi,i+1 ◦ fi,i+1 = I and g2i,i+1 = gi,i+1 ◦ gi,i+1 = I, i = 0, 1, 2, 3, where I is
the identity permutation.

Also, fi,i+1 ◦ gj,j+1 = gj,j+1 ◦ fi,i+1, i, j ∈ {0, 1, 2, 3} .

This is obvious from the definitions of fi,i+1 and gj,j+1 and this can
also easily be verified formally by direct calculation. These basic per-
mutations f01, f12, f23, f34,g01, g12, g23, g34 will generate all of the 14, 400
permutations that we defined in Section 5.

If we start with the extremely magic square of Fig. 2 and operate on it
in any way by using the above basic permutations fi,i+1 and gj,j+1 then
the image will always be an extremely magic 5 × 5 square and we can
generate from Fig. 2 14, 400 extremely magic 5×5 squares by doing this.
For example,

f34




8 5 21 17 14
22 19 13 10 1
15 6 2 24 18
4 23 20 11 7
16 12 9 3 25



=




8 5 21 19 12
24 17 13 10 1
15 6 4 22 18
2 23 20 11 9
16 14 7 3 25




and this 5× 5 matrix is an extremely magic 5× 5 square since the sum
of the 5 numbers in each of the 120 magic subsets stated in Section 4
is always 65. Of course, this includes the 10 rows and columns and 10
diagonals. We now deal with the permutation h. In Section 2, we defined
the dual matrix of Fig. 1 as the matrix where each (ai, Aj) is changed
to (aj , Ai). This dual matrix will lead to 14, 400 extremely magic 5× 5
squares in exactly the same way as the original matrix. It can be shown
that these 14, 400 dual magic squares can be obtained by flipping over
the original 14, 400 magic squares.

The permutation h is the permutation that defines the dual matrix of
Fig. 1. That is,
h(Fig. 1) = dual matrix.

It is obvious that h2 = h ◦ h = I.

By the symmetry between the ai’s and Ai’s, it is fairly easy to see
that the extremely magic 5 × 5 squares that are generated by the dual
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matrix will have the same 120 magic 5 element subsets as the origi-
nal matrix. Also, the 14, 400 similarity mappings of Section 5 for the
original magic squares will be exactly the same as the 14, 400 similarity
mappings for the dual magic squares. Therefore, we can use the same
basis f01, f12, f23, f34, g01, g12, g23, g34 for the similarity mappings of the
dual magic squares. By direct computation, it is very easy to show that
fi,i+1 ◦ h = h ◦ gi,i+1 and gi,i+1 ◦ h = h ◦ fi,i+1 for i = 0, 1, 2, 3.

Therefore, the number of permutations generated by f01, f12, f23, f34,
g01, g12, g23, g34, h will be 2·14, 400 = 28, 800 since we also know that we
cannot flip Fig. 1 over if we do not use h. The group structure of these
28, 800 permutations will be a dihedral type group that is generated from
f01, f12, f23, f34, g01, g12, g23, g34, h subject to the restrictions of following
laws.

1. fi,i+1◦ fi,i+1 = gj,j+1 ◦ gj,j+1 = h ◦ h = I.

2. fi,i+1◦ gj,j+1 = gj,j+1 ◦ fi,i+1.

3. fi,i+1 ◦ h = h ◦ gi,i+1

4. gi,i+1 ◦ h = h◦ fi,i+1.

Since g (f01, f12, f23, f34) ∼= S5 and g (g01, g12, g23, g34) ∼= S5 where
S5 is the symmetric group on {0, 1, 2, 3, 4} , we see from law 2 that
g (f01, f12, f23, f34, g01, g12, g23, g34) ∼= S5 × S5. This fact was also ob-
served in Section 5. When we add h to f01, f12, f23, f34, g01, g12, g23, g34
we see that we generate a dihedral type group that has 28, 800 permu-
tations.

7 A Puzzle

Suppose we start with the 5 × 5 extremely magic square of Fig. 2.
However, suppose that we are not aware that Fig. 2 is extremely
magic, but we only know that Fig. 2 is extra magic (or panmagic).
That is, we are only aware of the fact that the sums of the 5 num-
bers in each of the 5 rows, 5 columns and 10 generalized diagonals
equal 65. Also, suppose that we are given the 8 basic permutations
f01, f12, f23, f34, g01, g12, g23, g34 of Section 6. If we operate on the
Fig. 2 magic square in any arbitrary way by using these permutations
f01, f12, · · · , g34, we will always have an extra magic 5×5 square, and we
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could generate thousands of these extra magic 5 × 5 squares. However,
we would not have the slightest idea why this is true since we are not
aware of the big picture concerning extremely magic squares. Since any
panmagic 5 × 5 square is also extremely magic, this puzzle would also
work with any panmagic 5× 5 square.

8 A Generalization of the Fig. 1 Matrix

In Fig. 1, suppose we now place the 25 ordered pairs

{(ai, Aj) : i, j ∈ {0, 1, 2, 3, 4}}

in any arbitrary way in the 5×5 matrix. As always, we let a0, a1, a2, a3, a4
and A0, A1, A2, A3, A4 be any arbitrary permutation of 0, 1, 2, 3, 4. As
always, we use the code (ai, Aj)

#
= ai+5 (Aj − 1) to place the numbers

1, 2, 3, 4, · · · , 25 in the 5×5 matrix. Analogous to this paper, we can deal
with all permutations of a0, a1, a2, a3, a4 and A0, A1, A2, A3, A4 which we

call

[
a0 a1 a2 a3 a4
ai0ai1ai2ai3ai4

]
and

[
A0 A1 A2 A3 A4

Aj0Aj1Aj2Aj3Aj4

]
.

As in this paper, we can find 120 magic 5 element subsets whose sum is
always 65 and all 14, 400 5× 5 matrixes will have these same 120 magic
5 element subsets. We can also define the dual matrix and we leave it
to the reader to study whether the entire theory in this paper holds in
general for the dual matrix.

9 A Project for the Reader

We invite the reader to use the permutations
[
a0a1a2a3a4
a0a4a3a2a1

]
and

[
A0A1A2A3A4

A0A3A1A4A2

]

and observe that the permutation f that we define maps rows and
columns of the Fig. 1 matrix onto generalized diagonals and maps gen-
eralized diagonals onto rows and columns. We then invite the reader to
find other such permutations f of the Fig. 1 matrix that map the 20
rows, columns and generalized diagonals onto the 20 rows, columns and
generalized diagonals in various ways.
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10 An Application of the Marriage Theorem

The extremely magic 5 × 5 squares that we have studied are actually
much more magic than what we have explained in this paper. We need
the marriage theorems to explain the total magicness of these 5 × 5
squares. We state a variation in Section 11.

Suppose that we choose any one of the 16 configurations of Section 4 (call
it a) and place a on the 5 × 5 extremely magic square in any arbitrary
way. Of course, the sum of the 5 numbers in the configuration a is 65.
No matter how we choose a and place a on the 5× 5 square we can then
choose one of the 16 configurations (call it b) and place b on the 5 × 5
extremely magic square so that a and b are disjoint. Of course, the sum
of the 5 numbers in configuration b is also 65. No matter how a and b
are chosen and placed on the 5×5 magic square, we can then choose one
of the 16 configurations (call it c) and place c on the 5× 5 magic square
so that c is pairwise disjoint from each of a and b. Of course, the sum
of the 5 numbers in configuration c is also 65. No matter how a, b and
c are chosen and placed on the 5 × 5 magic square, we can then choose
one of the 16 configurations (call it d) and place d on the 5 × 5 magic
square so that d is pairwise disjoint from each of a, b, c. Of course, the
sum of the 5 numbers in d is 65. No matter how a, b, c and d are chosen
and placed on the 5 × 5 magic square, the 5 remaining squares of the
5 × 5 matrix will be one of the 16 configuration (call it e). Of course,
the sum of the 5 numbers in configuration e will be 65. Thus, we have
partitioned the 25 squares of the 5×5 magic square into 5 sets a, b, c, d, e
and the sum of the 5 numbers in each of a, b, c, d, e is 65. This fact is
much more powerful than what we have studied. This can be proved by
using the version of Hall’s Marriage Theorem stated in section 11, and
we consider this to be beyond the scope of this paper.

If a person did not know about the Fig. 1 drawing, the proof of this would
be almost hopeless even if one knows the variation of Hall’s Marriage
Theorem we mention below.

11 A Useful Marriage Theorem

Suppose dots are placed in the squares of an n × n checkerboard arbi-
trarily but so that each row and each column has exactly k dots. We
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allow more than one dot to be placed in a square. Then it is possible
to find a subset of n dots so that each row and each column contains
exactly one dot.

We are grateful to Prof. Ben Klein of Davidson College for his very
useful comments and for computing the rank of the matrix of Note 1.
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The 55th International Mathematical
Olympiad,

Cape Town, South Africa, 2014

The 55th International Mathematical Olympiad (IMO) was held 3–13
July in Cape Town, South Africa. This is the first time the IMO has
been held on the African continent. Four countries, all from the African
continent participated in the IMO for the first time this year. They were
Burkina Faso, Gambia, Ghana and Tanzania.

A total of 560 high school students from 101 countries participated. Of
these, 56 were girls.

Each participating country may send a team of up to six students, a
Team Leader and a Deputy Team Leader. At the IMO the Team Leaders,
as an international collective, form what is called the Jury. This Jury
was most ably chaired by Sizwe Mabizela.

The first major task facing the Jury is to set the two competition pa-
pers. During this period the Leaders and their observers are trusted to
keep all information about the contest problems completely confidential.
The local Problem Selection Committee had already shortlisted 30 prob-
lems from 141 problem proposals submitted by 43 of the participating
countries from around the world. During the Jury meetings four of the
shortlisted problems had to be discarded from consideration due to be-
ing too similar to material already in the public domain. Eventually,
the Jury finalised the exam questions and then made translations into
all the more than 50 languages required by the contestants.

The six questions are described as follows.
1. An easy sequence problem based on a discrete version of the inter-

mediate value theorem. It was proposed by Austria.

2. A medium minimax combinatorics problem proposed by Croatia.
It is about placing a set of mutually non-attacking rooks on a
chessboard so as to minimise the size of the largest square that
contains no rook.

3. A difficult classical geometry problem with awkward angle condi-
tions proposed by Iran.
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4. A very easy classical geometry problem proposed by Georgia.

5. A medium bin-packing number theory problem proposed by Lux-
embourg.

6. A difficult inequality from combinatorial geometry. Originally pro-
posed by Austria, the concluding inequality was strengthened by
the Problem Selection Committee.

The asymptotic behaviour of the inequality in question 6 was further
strengthened by Po-Shen Loh, the Leader from the USA. However, at
the time it was not known how far the asymptotic behaviour could be
pushed. So as an experiment, the wording of question 6 was phrased
in such a way that it encouraged an open ended investigation. Con-
sequently, apart from the time restriction question 6 is a genuine con-
temporary mathematical research problem, although full marks would
be given to an asymptotic bound that matched the bound found by the
Problem Selection Committee. As it turned out, no contestant was able
to reach the asymptotic bound found by Po-Shen.

These six questions were posed in two exam papers held on Tuesday
8 July and Wednesday 9 July. Each paper had three problems. The
contestants worked individually. They were allowed 41

2 hours per paper
to write their attempted proofs. Each problem was scored out of a
maximum of seven points.

For many years now there has been an opening ceremony prior to the
first day of competition. Following the formal speeches there was the
parade of the teams. Starting with Romania, the contestants came out
in the order of the year their country first participated at the IMO. At
the conclusion of the opening ceremony the 2014 IMO was declared open.

After the exams the Leaders and their Deputies spent about two days
assessing the work of the students from their own countries, guided by
marking schemes, which had been discussed earlier. A local team of
markers called Coordinators also assessed the papers. They too were
guided by the marking schemes but are allowed some flexibility if, for
example, a Leader brings something to their attention in a contestant’s
exam script that is not covered by the marking scheme. The Team
Leader and Coordinators have to agree on scores for each student of
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the Leader’s country in order to finalise scores. Any disagreements that
cannot be resolved in this way are ultimately referred to the Jury.

Questions 1 and 4 turned out to be very easy as expected. Both averaged
in excess of 5 points. As expected, question 6 was very difficult, averaging
just 0.3 points. Only 15 students scored full marks on this question.

The medal cuts were set at 29 for gold, 22 for silver and 16 for bronze.
Consequently, there were 295 (=52.7%) medals awarded, a little more
generous than usual. The medal distributions1 were 49 (=8.8%) gold,
113 (=20.2%) silver and 133 (=23.8%) bronze. These awards were
presented at the closing ceremony. Of those who did not get a medal,
a further 151 contestants received an honourable mention for solving at
least one question perfectly.2 Three students achieved the most excellent
feat of a perfect score of 42. They were Alex Gunning of Australia, Jiyang
Gao of China and Po-Sheng Wu of Taiwan. They were given a standing
ovation during the presentation of medals at the closing ceremony.

The 2014 IMO was organised by the South African Mathematics Foun-
dation in partnership with the University of Cape Town.

Venues for future IMOs have been secured up to 2019 as follows.

2015 Chiang Mai, Thailand
2016 Hong Kong
2017 Brazil
2018 Romania
2019 United Kingdom

Much of the statistical information found in this report can also be found
at the official website of the IMO. www.imo-official.org

Angelo Di Pasquale

Australian IMO Team Leader

AUSTRALIA

1The total number of medals must be approved by the Jury and should not
normally exceed half the total number of contestants. The numbers of gold, silver
and bronze medals must be approximately in the ratio 1:2:3.

2Fifty-five contestants managed the feat of what might be called a “double hon-
ourable mention”. They did not get a medal, but solved two questions perfectly.
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1 IMO Papers

First Day

Tuesday, July 8, 2014

Problem 1. Let a0 < a1 < a2 < · · · be an infinite sequence of positive
integers. Prove that there exists a unique integer n ≥ 1 such that

an <
a0 + a1 + · · ·+ an

n
≤ an+1.

Problem 2. Let n ≥ 2 be an integer. Consider an n × n chessboard
consisting of n2 unit squares. A configuration of n rooks on this board is
peaceful if every row and every column contains exactly one rook. Find
the greatest positive integer k such that, for each peaceful configuration
of n rooks, there is a k× k square which does not contain a rook on any
of its k2 unit squares.

Problem 3. Convex quadrilateral ABCD has ∠ABC = ∠CDA =
90◦. Point H is the foot of the perpendicular from A to BD. Points
S and T lie on sides AB and AD, respectively, such that H lies inside
triangle SCT and

∠CHS − ∠CSB = 90◦, ∠THC − ∠DTC = 90◦.

Prove that line BD is tangent to the circumcircle of triangle TSH.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points
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Second Day

Wednesday, July 9, 2014

Problem 4. Points P and Q lie on side BC of acute-angled triangle
ABC so that ∠PAB = ∠BCA and ∠CAQ = ∠ABC. Points M and
N lie on lines AP and AQ, respectively, such that P is the midpoint
of AM , and Q is the midpoint of AN . Prove that lines BM and CN
intersect on the circumcircle of triangle ABC.

Problem 5. For each positive integer n, the Bank of Cape Town issues
coins of denomination 1

n . Given a finite collection of such coins (of not
necessarily different denominations) with total value at most 99 + 1

2 ,
prove that it is possible to split this collection into 100 or fewer groups,
such that each group has total value at most 1.

Problem 6. A set of lines in the plane is in general position if no two
are parallel and no three pass through the same point. A set of lines in
general position cuts the plane into regions, some of which have finite
area; we call these its finite regions. Prove that for all sufficiently large
n, in any set of n lines in general position it is possible to colour at least√
n of the lines blue in such a way that none of its finite regions has a

completely blue boundary.

Note: Results with
√
n replaced by c

√
n will be awarded points depend-

ing on the value of the constant c.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points
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1 IMO Papers

First Day

Tuesday, July 8, 2014
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2 Results

Mark Distribution by Question

Mark Q1 Q2 Q3 Q4 Q5 Q6
0 75 240 479 24 301 514
1 23 32 43 103 60 7
2 14 25 1 28 83 7
3 22 17 2 16 10 11
4 15 14 3 5 8 0
5 18 39 0 3 3 5
6 23 71 4 3 11 1
7 370 122 28 378 84 15

Total 560 560 560 560 560 560
Mean 5.3 3.0 0.5 5.2 1.7 0.3

Some Country Totals

Rank Country Total
1 China 201
2 USA 193
3 Taiwan 192
4 Russia 191
5 Japan 177
6 Ukraine 175
7 South Korea 172
8 Singapore 161
9 Canada 159
10 Vietnam 157
11 Australia 156
11 Romania 156
13 Netherlands 155
14 North Korea 154
15 Hungary 153
16 Germany 152

Some Country Totals

Rank Country Total
17 Turkey 147
18 Hong Kong 143
18 Israel 143
20 UK 142
21 Iran 131
21 Thailand 131
23 Kazakhstan 129
23 Malaysia 129
23 Serbia 129
26 Italy 128
26 Mexico 128
26 Poland 128
29 Croatia 126
29 Indonesia 126
29 Peru 126
32 Czech Republic 124

The medal cuts were set at 29 for gold, 22 for silver and 16 for bronze.
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Distribution of Awards at the 2014 IMO

Country Total Gold Silver Bronze H.M.
Albania 46 0 0 0 3
Argentina 81 0 0 2 4
Armenia 110 0 2 1 3
Australia 156 1 3 2 0
Austria 86 0 1 1 3
Azerbaijan 75 0 0 1 5
Bangladesh 84 0 1 1 4
Belarus 122 1 1 3 1
Belgium 77 0 1 0 5
Benin 2 0 0 0 0
Bolivia 5 0 0 0 0
Bosnia and Herzegovina 86 0 1 0 4
Brazil 122 0 3 2 1
Bulgaria 120 0 3 1 2
Burkina Faso 19 0 0 0 1
Canada 159 2 1 3 0
Chile 33 0 0 1 1
China 201 5 1 0 0
Colombia 82 0 1 1 3
Costa Rica 72 0 0 1 4
Croatia 126 1 2 2 1
Cuba 10 0 0 0 1
Cyprus 53 0 0 0 3
Czech Republic 124 0 1 5 0
Denmark 62 0 0 2 1
Ecuador 19 0 0 0 2
Estonia 52 0 0 0 3
Finland 59 0 0 1 2
France 96 0 1 4 0
Gambia 1 0 0 0 0
Georgia 92 0 1 2 2
Germany 152 0 6 0 0
Ghana 0 0 0 0 0
Greece 109 0 2 2 2
Hong Kong 143 0 4 2 0
Hungary 153 1 4 1 0
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Distribution of Awards at the 2014 IMO

Country Total Gold Silver Bronze H.M.
Iceland 47 0 0 1 1
India 110 0 1 3 2
Indonesia 126 0 2 3 1
Iran 131 0 4 2 0
Ireland 67 0 0 0 6
Israel 143 0 5 1 0
Italy 128 1 2 1 1
Ivory Coast 3 0 0 0 0
Japan 177 4 1 1 0
Kazakhstan 129 1 1 4 0
Kyrgyzstan 29 0 0 0 3
Latvia 64 0 1 1 1
Liechtenstein 22 0 1 0 0
Lithuania 104 0 1 3 2
Luxembourg 41 0 0 1 2
Macau 74 0 0 2 4
Macedonia (FYR) 62 0 0 1 3
Malaysia 129 2 1 1 2
Mexico 128 0 4 1 1
Moldova 90 0 0 2 3
Mongolia 102 0 0 5 1
Montenegro 21 0 0 0 2
Morocco 43 0 0 0 4
Netherlands 155 3 2 1 0
New Zealand 76 0 1 1 3
Nigeria 32 0 0 1 1
North Korea 154 1 4 0 1
Norway 61 0 1 0 2
Pakistan 50 0 0 1 1
Panama 7 0 0 0 1
Paraguay 56 0 0 1 2
Peru 126 0 1 5 0
Philippines 96 0 1 3 2
Poland 128 1 0 4 1
Portugal 123 0 2 3 1
Puerto Rico 12 0 0 0 1
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Distribution of Awards at the 2014 IMO

Country Total Gold Silver Bronze H.M.
Romania 156 1 5 0 0
Russia 191 3 3 0 0
Saudi Arabia 103 0 0 4 2
Serbia 129 1 3 2 0
Singapore 161 3 2 1 0
Slovakia 122 0 1 5 0
Slovenia 78 0 0 2 3
South Africa 67 0 0 1 4
South Korea 172 2 4 0 0
Spain 90 0 0 3 2
Sri Lanka 82 0 0 2 4
Sweden 80 0 0 2 4
Switzerland 114 0 2 4 0
Syria 53 0 0 0 4
Taiwan 192 4 0 2 0
Tajikistan 89 0 0 2 4
Tanzania 2 0 0 0 0
Thailand 131 0 4 2 0
Trinidad and Tobago 32 0 0 1 0
Tunisia 37 0 0 0 3
Turkey 147 1 3 2 0
Uganda 5 0 0 0 0
Ukraine 175 2 3 1 0
United Kingdom 142 0 4 2 0
United States of America 193 5 1 0 0
Uruguay 31 0 0 0 3
Venezuela 24 0 0 0 2
Vietnam 157 3 2 1 0
Zimbabwe 5 0 0 0 0
Total (101 teams, 560 contestants) 49 113 133 151

N.B. Not all countries sent a full team of six students.
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Tournament of Towns
Selected Problems, Spring 2014

Andy Liu

1. Olga’s mother baked 7 apple pies, 7 banana pies and 1 cherry
pie. They are arranged in that exact order on a round plate when
they are put into the microwave oven. All the pies look alike, but
Olga knows only their relative positions on the plate because it has
rotated. She wants to eat the cherry pie. She is allowed to taste
three of them, one at a time, before making up her mind which
one she will take. Can she guarantee that she can take the cherry
pie?

Solution.
Number the pies 1 to 15 in cyclic order, with the 7 banana pies
following the 7 apple pies and preceding the cherry pie. Olga tries
number 8. There are three cases.
Case 1. Number 8 is the cherry pie. Then Olga gets what she
wants.
Case 2. Number 8 is an apple pie. Then number 15 must be a
banana pie and the cherry pie is not between these two. Olga tries
number 4. There are three subcases.
Subcase 2(a). Number 4 is the cherry pie. Then Olga gets what
she wants.
Subcase 2(b). Number 4 is another apple pie. Then number 5
to number 7 are all apple pies. Olga tries number 2. If it is the
cherry pie, she gets what she wants. If it is another apple pie, then
number 1 is the cherry pie. If it is a banana pie, then number 3 is
the cherry pie.
Subcase 2(c). Number 4 is a banana pie. Then number 1 to
number 3 are all banana pies. Olga tries number 6. The analysis
is analogous to Subcase 2(b).
Case 3. Number 8 is a banana pie. Then number 1 must be an
apple pie and the cherry pie is not between these two. Olga tries
number 12. The analysis is analogous to Case 2.
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2. Each of the squares in a 5×7 table contains a number. Peter knows
only that the sum of the numbers in the 6 squares of any 2× 3 or
3 × 2 rectangle is 0. He is allowed to ask for the number in any
position in the table. What is the minimum number of questions
he needs to ask in order to be able to determine the sum of all 35
numbers in the table?

Solution.
The diagram below shows a partition of the 5 × 7 table into four
2×3 or 3×2 rectangles, two 3×2 rectangles with one corner missing,
plus the central square. Peter already knows that the sum of the
24 numbers in the four rectangles is 0. He only needs to ask for the
number in the central square. Suppose it is x. Then the sum of the
5 numbers in each of the two rectangles with one corner missing is
−x. Hence the sum of all 35 numbers is 2(−x) + x = −x.

3. Forty Thieves are ranked from 1 to 40, and Ali Baba is also given
the rank 1. They want to cross a river using a boat. Nobody may
be in the boat alone, and no two people whose ranks differ by more
than 1 may be in the boat at the same time. Is this task possible?

Solution.
More generally, we prove by mathematical induction on n that the
crossing is possible for any positive number n of thieves. For n = 1
or 2, the whole party can cross together. For n = 3, the crossing
can be accomplished in the following five steps.

(1) Ali Baba and the thieves ranked 1 and 2 go to the far shore.

(2) The thieves ranked 1 and 2 come back to the near shore.

(3) The thieves ranked 2 and 3 go to the far shore.
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(4) Ali Baba and the thief ranked 2 come back to the near shore.

(5) Ali Baba and the thieves ranked 1 and 2 go to the far shore.

Suppose the crossing is possible for n = 1, 2, . . . , k for some k ≥ 3.
Then the crossing for n = k+1 can be accomplished in the following
five steps.

(1) Ali Baba and the thieves ranked 1 to k go to the far shore.

(2) The thieves ranked k − 1 and k come back to the near shore.

(3) The thieves ranked k and k + 1 go to the far shore.

(4) Ali Baba and the thieves ranked 1 to k − 2 come back to the
near shore.

(5) Ali Baba and the thieves ranked 1 to k−1 go to the far shore.

Note that Step (1), Step (4) and Step (5) are possible by the
induction hypothesis, with n = k, k − 2 and k − 1 respectively.
This is why we need to include the case k = 3 as part of the basis.

4. A park is in the shape of a convex quadrilateral ABCD. Alex, Ben
and Chris are jogging there, each at a constant speed. Alex and
Ben start from A at the same time, Alex jogging along AB and
Ben along AC. When Alex arrives at B, he immediately continues
on along BC. At the same time, Chris starts from B, jogging
along BD. Alex and Ben arrive at C at the same time, and Alex
immediately continues on along CD. He and Chris arrive at D at
the same time. Can it happen that Ben and Chris meet each other
at the point of intersection of AC and BD?

Solution.
If Ben and Chris do meet each other at the point O of intersection
of AC and BD, it must occur after Chris leaves B and before Ben
arrives at C. Let the lengths of these two intervals be x and y
respectively. Let the constant speeds of Alex, Ben and Chris be
a, b and c respectively. Since AB + BC > AC, a > b. Since
BC + CD > BD, a > c. Now BC = a(x + y), BO = cx and
OC = by. We have BO+OC = cx+by < a(x+y) = BC, which is
a contradiction. Hence Ben and Chris cannot have met each other
at O.
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5. A V-tromino is a 2× 2 square with one cell missing. Anna marks
several cells of a 5× 5 board. Boris’ task is to cover up all of them
by placing non-overlaping copies of the V-tromino so that each
copy covers exactly three cells of the board. What is the minimum
number of cells Anna must mark in order to prevent Boris from
succeeding in his task?

Solution.
Anna marks 9 cells as shown in the diagram below on the left.
Boris can put at most � 5×5

3 � = 8 copies of the V-tromino on the
board. Each copy can cover at most 1 marked cell. Hence Boris
cannot succeed in his task.
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Suppose Anna marks 8 cells or less. Then at least one of the 9
marked cells in the diagram above on the left is now unmarked.
The diagram above on the right shows that Boris can succeed in
his task, regardless of where that unmarked cell is.

6. A non-isosceles triangle is given. In each move, Anna chooses a
point on the plane, and Boris decides whether to paint it red or
blue. Anna wins if she can get three points of the same colour
forming a triangle similar to the given one. What is the minimum
number moves Anna needs to force a win, regardless of the shape
of the given triangle?

Solution by Central Jury.
Let the triangle be ABC. First Anna chooses all three vertices.
Boris must paint two of them in one colour and the third one in
the other colour. For definiteness, say Boris paints B and C red
and A blue. Now Anna chooses D and E on the same side of BC
as A, so that triangles ABC, BCD and BEC are similar. Then
Boris must paint both of them blue. Now DCE is a triangle with
three blue vertices. We claim that Anna has won after choosing
these five points.
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(4) Ali Baba and the thief ranked 2 come back to the near shore.

(5) Ali Baba and the thieves ranked 1 and 2 go to the far shore.

Suppose the crossing is possible for n = 1, 2, . . . , k for some k ≥ 3.
Then the crossing for n = k+1 can be accomplished in the following
five steps.

(1) Ali Baba and the thieves ranked 1 to k go to the far shore.

(2) The thieves ranked k − 1 and k come back to the near shore.

(3) The thieves ranked k and k + 1 go to the far shore.

(4) Ali Baba and the thieves ranked 1 to k − 2 come back to the
near shore.

(5) Ali Baba and the thieves ranked 1 to k−1 go to the far shore.

Note that Step (1), Step (4) and Step (5) are possible by the
induction hypothesis, with n = k, k − 2 and k − 1 respectively.
This is why we need to include the case k = 3 as part of the basis.

4. A park is in the shape of a convex quadrilateral ABCD. Alex, Ben
and Chris are jogging there, each at a constant speed. Alex and
Ben start from A at the same time, Alex jogging along AB and
Ben along AC. When Alex arrives at B, he immediately continues
on along BC. At the same time, Chris starts from B, jogging
along BD. Alex and Ben arrive at C at the same time, and Alex
immediately continues on along CD. He and Chris arrive at D at
the same time. Can it happen that Ben and Chris meet each other
at the point of intersection of AC and BD?

Solution.
If Ben and Chris do meet each other at the point O of intersection
of AC and BD, it must occur after Chris leaves B and before Ben
arrives at C. Let the lengths of these two intervals be x and y
respectively. Let the constant speeds of Alex, Ben and Chris be
a, b and c respectively. Since AB + BC > AC, a > b. Since
BC + CD > BD, a > c. Now BC = a(x + y), BO = cx and
OC = by. We have BO+OC = cx+by < a(x+y) = BC, which is
a contradiction. Hence Ben and Chris cannot have met each other
at O.
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5. A V-tromino is a 2× 2 square with one cell missing. Anna marks
several cells of a 5× 5 board. Boris’ task is to cover up all of them
by placing non-overlaping copies of the V-tromino so that each
copy covers exactly three cells of the board. What is the minimum
number of cells Anna must mark in order to prevent Boris from
succeeding in his task?

Solution.
Anna marks 9 cells as shown in the diagram below on the left.
Boris can put at most � 5×5

3 � = 8 copies of the V-tromino on the
board. Each copy can cover at most 1 marked cell. Hence Boris
cannot succeed in his task.
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Suppose Anna marks 8 cells or less. Then at least one of the 9
marked cells in the diagram above on the left is now unmarked.
The diagram above on the right shows that Boris can succeed in
his task, regardless of where that unmarked cell is.

6. A non-isosceles triangle is given. In each move, Anna chooses a
point on the plane, and Boris decides whether to paint it red or
blue. Anna wins if she can get three points of the same colour
forming a triangle similar to the given one. What is the minimum
number moves Anna needs to force a win, regardless of the shape
of the given triangle?

Solution by Central Jury.
Let the triangle be ABC. First Anna chooses all three vertices.
Boris must paint two of them in one colour and the third one in
the other colour. For definiteness, say Boris paints B and C red
and A blue. Now Anna chooses D and E on the same side of BC
as A, so that triangles ABC, BCD and BEC are similar. Then
Boris must paint both of them blue. Now DCE is a triangle with
three blue vertices. We claim that Anna has won after choosing
these five points.
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B C

A

D

E

By similar triangles, we have ∠DBE = ∠DBC − ∠EBC =
∠BCE − ∠BCA = ∠ACE and DB

CA = BC
AB = EB

CE . Hence tri-

angles DBE and ACE are similar, so that we have DE
AE = BE

CE and
∠BED = ∠CEA. It follows that ∠AED = ∠CEB, so that trian-
gles AED and CEB are similar. This justifies the claim. Finally,
observe that if Anna chooses only four points, Boris can prevent
Anna from winning by painting any two of them red and the other
two blue.

7. A computer directory lists all pairs of cities connected by direct
flights. Anna hacks into the computer and permutes the names of
the cities. It turns out that no matter which other city is renamed
Moscow, she can rename the remaining cities so that the directory
is perfectly correct. Later, Boris does the same thing. However,
he insists on exchanging the names of Moscow with another city.
Is it always possible for him to rename the remaining cities so that
the directory is perfectly correct?

Solution by Central Jury.
The diagram below shows 10 cities linked by line segments repre-
senting direct flights. Since all cities are situated symmetrically,
Anna can always rename the cities without affecting the directory.

Let Moscow and Novgorod be marked M and N as shown in the
diagram above. Then A, as the only city with direct flights to both
M and N , must retain its own name after those of M and N have
been exchanged. Now B, as the only other town with a direct flight
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M

N

A

B

C

to A, must also retain its own name. Before the exchange, A is the
only city with direct flights to both M and B. After the exchange,
both A and C have direct flights to both M and B. Thus Boris’
action must affect the directory.

Andy Liu

University of Alberta

CANADA

E-mail: acfliu@gmail.com
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By similar triangles, we have ∠DBE = ∠DBC − ∠EBC =
∠BCE − ∠BCA = ∠ACE and DB

CA = BC
AB = EB

CE . Hence tri-

angles DBE and ACE are similar, so that we have DE
AE = BE

CE and
∠BED = ∠CEA. It follows that ∠AED = ∠CEB, so that trian-
gles AED and CEB are similar. This justifies the claim. Finally,
observe that if Anna chooses only four points, Boris can prevent
Anna from winning by painting any two of them red and the other
two blue.

7. A computer directory lists all pairs of cities connected by direct
flights. Anna hacks into the computer and permutes the names of
the cities. It turns out that no matter which other city is renamed
Moscow, she can rename the remaining cities so that the directory
is perfectly correct. Later, Boris does the same thing. However,
he insists on exchanging the names of Moscow with another city.
Is it always possible for him to rename the remaining cities so that
the directory is perfectly correct?

Solution by Central Jury.
The diagram below shows 10 cities linked by line segments repre-
senting direct flights. Since all cities are situated symmetrically,
Anna can always rename the cities without affecting the directory.

Let Moscow and Novgorod be marked M and N as shown in the
diagram above. Then A, as the only city with direct flights to both
M and N , must retain its own name after those of M and N have
been exchanged. Now B, as the only other town with a direct flight
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only city with direct flights to both M and B. After the exchange,
both A and C have direct flights to both M and B. Thus Boris’
action must affect the directory.
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