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From the President
Dear readers of Mathematics Competitions journal!

When I first wrote this greeting, I said that we were on the eve of the next 
edition of the most significant event in mathematics education – the 14th 
International Congress of Mathematics Education, “ICME-14”, wich had been 
expected to be held in Shanghai, China. Now I have to say that the Congress 
has been postponed by one year. This is due to the global pandemic caused 
by the coronavirus disease. The congress organizers believe that even the 
postponement poses many challenges, but that this is the best decision in the 
current situation, and they have pledged do everything possible to ensure a 
full-fledged and successful realization of this important congress.

I hope that the scientific program of ICME-14 will remain the same. For 
now, Topic Study Group TSG-46 “Mathematical Competitions and Other 
Challenging Activities” at ICME-14 designed to gather a group of participants 
who are interested in the specific features, trends and needs of “Competition 
Mathematics” is the place where the WFNMC members may bring ideas for 
discussion. Please check whether TSG-46 will ask for additional proposals, 
and if so, submit your contributions.

The traditional one-day mini-conference of WFNMC that usually takes 
place the day before the opening of the congress has also been postponed 
by one year. This is a good chance for those of you who were unable to send 
their proposals before, to do so now. Please take this opportunity and submit 
contributions for the mini-conference. As usual, papers presented at the 
mini-conference can be published in the journal Mathematics Competitions.

Due to the coronavirus disease, there are not many happenings in 2020, 
but it seems that the summer of 2021 will be full of exciting scientific events in 
the world of mathematics competitions. I am sure we are all looking forward 
to an enjoyable time next year.

My best regards,

Kiril Bankov 
President of WFNMC 

March, 2020
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Editor’s Page

Dear Competitions enthusiasts,  
readers of our Mathematics Competitions journal!

Following the example of previous editors, I invite you to submit to 
our journal Mathematics Competitions your creative essays  on a variety of 
topics related to creating original problems, working with students and 
teachers, organizing and running mathematics competitions, historical and 
philosophical views on mathematics and closely related fields, and even your 
original literary works related to mathematics.

Just be original, creative, and inspirational. Share your ideas, problems, 
conjectures, and solutions with all your colleagues by publishing them here.

We have formalized the submission format to establish uniformity in our 
journal.

Submission Format
Format: should be LaTeX, TeX, or Microsoft Word, accompanied by 

another copy in pdf.

Illustrations: must be inserted at about the correct place of the text of 
your submission in one of the following formats: jpeg, pdf, tiff, eps, or mp. 
Your illustration will not be redrawn. Resolution of your illustrations must be 
at least 300 dpi, or, preferably, done as vector illustrations. If a text is needed in 
illustrations, use a font from the Times New Roman family in 11 pt.

Start: with the title in BOLD 14 pt, followed on the next line by the au-
thor(s)’ name(s) in italic 12 pt.

Main Text: Use a font from the Times New Roman family in 11 pt.

End: with your name-address-email and your website (if applicable).

Include: your high resolution small photo and a concise professional 
summary of your works and titles.

Please submit your manuscripts to María Elizabeth Losada at 
director.olimpiadas@uan.edu.co
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We are counting on receiving your contributions, informative, inspired 
and creative.

Best wishes,

María Falk de Losada 
Acting Editor, Mathematics Competitions

Past President, WFNMC
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Lifting the Exponent Lemma and Elliptic
Curves From the Lifting the Exponent

Lemma to Elliptic Curves with Isomorphic
Groups of Points. How Olympiad

Mathematics Influences Mathematical
Research

Clemens Heuberger (clemens.heuberger@aau.at)

Institut für Mathematik Alpen Adria Universität Klagenfurt, Austria

Abstract

For several years, the so-called “Lifting the Exponent
Lemma” has been considered to be part of the curriculum
of contestants preparing for international mathematical
competitions. However, it is hard to find it in the sci-
entific literature. In this talk, we review the lemma and
then report on a scientific paper which after translating
the original question on elliptic curves to an elementary
problem just boils down to suitably applying the lemma.

1 Introduction

About ten years ago, an idea which seems to have been folklore
for quite some time became known as the “Lifting-the-Exponent
Lemma” in the mathematical olympiad community [4, 1]. In
this survey, we first recall the lemma including a sketch of the
proof. We then proceed to an application in a recent mathemat-
ical olympiad problem in the second part of this survey. In the
third part, we consider an application of the lemma in the scien-
tific literature; in particular in a study [2] concerning isomorphic
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1 Introduction

About ten years ago, an idea which seems to have been folklore 
for quite some time became known as the “Lifting the Exponent 
Lemma” in the mathematical olympiad community [4, 1]. In 
this survey, we first recall the lemma including a sketch of the 
proof. We then proceed to an application in a recent mathemat-
ical olympiad problem in the second part of this survey. In the 
third part, we consider an application of the lemma in the scien-
tific literature in particular in a study [2] concerning isomorphic 
point groups of elliptic curves. We will first introduce the nec-
essary background to formulate the problem and then proceed 
to a characterisation of the problem by Wittmann in elemen-
tary terms. In the last part of the paper, we will then sketch 
the reduction of the elementary problem by means of olympiad 
mathematics to a question whose solution is essentially equiva-
lent to the Lifting the Exponent Lemma.

2 Lifting the Exponent Lemma

In this section, we recall the Lifting the Exponent Lemma. As
usual, we denote the p-adic valuation of an integer x (the expo-
nent of p in the prime factor decomposition of x) by vp(x). For
example,

v2(2
4 · 3) = 4; v3(2

4 · 3) = 1; v5(2
4 · 3) = 0.

Lemma 1 (Lifting the Exponent [1]). Let p be a prime, a ≡
b �≡ 0 (mod p) and n ≥ 1. If p = 2 and n is even, additionally
assume that a ≡ b (mod 4).

Then

vp(a
n − bn) = vp(a− b) + vp(n).

2
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We note that the lemma is incorrect without the additional
condition for p = 2: take p = 2, n = 2, a = 3 and b = 1, then

v2(3
2 − 12) = v2(8) = 3 > 2 = v2(3− 1) + v2(2).

Actually, the well-known fact that the square of any odd integer
is congruent to 1 modulo 8 strikes once more.

Proof of Lemma 1. We proceed in three steps.
We first consider the case that n is coprime to p. We decom-

pose an − bn as

an − bn = (a− b)

n−1∑
j=0

ajbn−1−j . (1)

By the assumption that a ≡ b (mod p), we have

n−1∑
j=0

ajbn−1−j ≡
n−1∑
j=0

ajan−1−j =

n−1∑
j=0

an−1 = nan−1 �≡ 0 (mod p),

because a is coprime to p by assumption.
This implies that

∑n−1
j=0 a

jbn−1−j is not divisible by p and
therefore, (1) implies that vp(a

n − bn) = vp(a − b). This is
exactly the assertion of the Lifting the Exponent Lemma in this
case.

We next consider the case when n = p. By assumption, we
can write a = b+cpk where k = vp(a−b) ≥ 1 and c is coprime to
p. Note that the additional assumption guarantees that k ≥ 2
if p = 2. We compute ap − bp modulo pk+2 by the binomial
theorem:

ap − bp = (b+ cpk)p − bp

=

(
bp + cpk+1bp−1 +

p(p− 1)

2
c2p2kbp−2 +

p∑
j=3

(
p

j

)
cjpjkbp−j

)
− bp.

3
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As jk ≥ k + 2 for j ≥ 3 because of k ≥ 1, we certainly have

ap − bp ≡ cpk+1bp−1 +
p(p− 1)

2
c2p2kbp−2 (mod pk+2).

If p is odd, then (p−1)/2 is an integer and the second summand is
divisible by p2k+1 which is divisible by pk+2. If p = 2, however,
we have to use the assumption that k ≥ 2 to see that p2k is
divisible by pk+2. So, in any case, we have

ap − bp ≡ cbp−1pk+1 (mod pk+2).

By assumption, cbp−1 is coprime to p. Therefore, vp(a
p − bp) =

k + 1 = vp(a− b) + vp(p), as required.
We now turn to the general case where n = ptm for some

t ≥ 0 and some integer m which is coprime to p. We prove the
lemma by induction on t. For t = 0, the assertion has been shown
in our first case. The induction step from t to t+1 then follows
from our second case together with the induction hypothesis:

vp(a
pt+1m − bp

t+1m) = vp
(
(ap

tm)p − (bp
tm)p

)

= vp(a
ptm − bp

tm) + 1 = vp(a− b) + t+ 1.

3 An Olympiad Problem

There are plenty of examples of olympiad problems which can
be solved by the Lifting the Exponent Lemma, see [1, 4]. We
add one recent problem of the Austrian Mathematical Olympiad
to the list. In this case, using the Lifting the Exponent Lemma
is optional.

Problem 1 (Austria, 2018, Final Round/6 (Walther Janous)).
Determine all digits z such that for each integer k ≥ 1 there
exists an integer n ≥ 1 with the property that the decimal repre-
sentation of n9 ends with at least k digits z.

4
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Solution. Answer: This is possible for z ∈ {0, 1, 3, 7, 9}.
For z = 0 we easily find n = 10� with an integer � such that

9� ≥ k.
For z ∈ {2, 4, 6, 8} the number n9 is even and therefore n

must be even, too, and hence n9 must be divisible by 29. How-
ever, numbers ending with 222, 444 or 666 are not divisible by
8, and numbers ending with 8888 are not divisible by 16. There-
fore, there does not exist a solution for these values of z.

Similarly, for z = 5 the number n9 is divisible by 5, therefore
n itself is divisible by 5, too, and therefore, n9 must be divisible
by 59. However, numbers ending with 55 are not divisible by 25.

For z ∈ {1, 3, 7, 9}, let b := (zzz . . . z)10 with k digits z. We
have to prove that there exists some integer n such that n9 ≡ b
(mod 10k). We do this by proving that taking the ninth power is
a surjective map from the set of primitive residue classes modulo
10k to itself (a residue class modulo 10k is said to be primitive
if its elements are coprime to 10k). As this is a finite set, the
map is surjective if and only if it is bijective and if and only if it
is injective. Thus we assume that n9 ≡ m9 (mod 10k) for some
m and n which are coprime to 10. This implies that n9 ≡ m9

(mod 10). By Euler’s theorem, n4 ≡ 1 (mod 10) and therefore
n ≡ m (mod 10). The Lifting the Exponent Lemma implies that
k ≤ vp(n

9−m9) = vp(n−m)+ vp(9) = vp(n−m) for p ∈ {2, 5}.
This implies that n ≡ m (mod 10k). We therefore proved that
taking the ninth power is injective.

Of course, there are other solutions to this problem; in par-
ticular taking the rth power of n9 ≡ b (mod 10k) where r is the
inverse residue of 9 modulo ϕ(10k). Another approach is via
Hensel lifting.

In fact, the problem was solved by two students out of 24
participating in the final round of the Austrian Mathematical
Olympiad; both students qualified for IMO and both obtained a
bronze medal there.

5
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Figure 1: Elliptic curve E : y2 = x3 + 26
9 x

2 + 1 over R

4 Elliptic Curves

As announced in the introduction, we will consider an applica-
tion of the Lifting the Exponent Lemma to a problem on iso-
morphic point groups of elliptic curves. We collect the necessary
background on elliptic curves in this section.

The simplest definition of an elliptic curve is to define it via
its affine equation in Weierstrass form

y2 = x3 + ax2 + bx+ c

for given constants a, b and c where the cubic polynomial on the
right side is assumed to have no multiple roots. An example of
an elliptic curve over the reals is shown in Figure 1.

We define a special addition on this curve: For two (distinct)
points P and Q on the curve, we take the line through P and
Q, find its third intersection with the curve and reflect that
point about the horizontal axis to obtain P + Q, see Figure 1.

6
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To compute R + R, i.e., doubling a point, we take the tangent
through R as the line.

It is obvious that this operation is commutative, i.e., P+Q =
Q+P . When including a point 0 at infinity, we have P +0 = P
and −P is the reflection of P about the horizontal axis. It is
far from obvious from this approach that the operation is in fact
associative: (P +Q) +R = P + (Q+R) for all points P , Q and
R. See for instance Knapp’s book [3] for an elementary proof.
So the set of points together with the point at infinity form a
commutative group.

There are many instances where elliptic curves are of inter-
est within mathematics (for instance, the proof of Fermat’s last
theorem heavily relies on elliptic curves, among other topics),
but elliptic curves also have applications, e.g., in cryptography.
There, the essential feature is that scalar multiplication is con-
sidered to be a “one-way-function”: for n ∈ Z and P on the
curve, the multiple nP = P + · · ·+P (with n summands P ) can
be computed efficiently by at most 2 log2 n additions or doubling
operations; the inverse operation (given nP and P , compute n),
however, seems to be intractable in reasonable time. For these
purposes, it is more convenient to consider elliptic curves over a
finite field instead of the rationals.

Therefore, we will now replace the field of real numbers by
a finite field Fq with q elements for some prime power q, for
instance the residue classes modulo some prime in Z. For com-
pleteness be advised that if 1 + 1 = 0 (e.g., integers modulo 2)
or 1 + 1 + 1 = 0 (e.g., integers modulo 3), the Weierstrass form
has to be modified to the so-called long Weierstrass form.

A map ϕ between two elliptic curves E and E′ is said to be a
homomorphism if ϕ(P +Q) = ϕ(P )+ϕ(Q) for all points P and
Q on E. If E and E′ coincide, we say that ϕ is an endomorphism
of E.

7
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5 Problem Formulation

We are now able to formulate the research question: Let q be
the power of a prime, Fq be a field with q elements and E and
E′ be elliptic curves over Fq such that E and E′ have the same
number of points over Fq.

The question then is to find all k ≥ 1 such that the point
groups of E and E′ over the field extension Fqk are isomorphic,
i.e., there exists a bijective homomorphism between E and E′.

An important step has been provided by Wittmann [5]. Its
formulation, however, needs some more notation. The Frobenius
endomorphism τ of an elliptic curve over Fq is the map which
sends a pair (x, y) to (xq, yq). In fact, it is an endomorphism
because of the well-known fact that the binomial coefficient

(
p
j

)
is divisible by p for 0 < j < p and prime p; in our case, we use
the prime p of which q is a power.

It is a known, but non-trivial, result that for each point P of
the curve, we have

τ2(P )− (q + 1− n)τ(P ) + qP = 0

where n denotes the number of points on the curve. Of course,
the additions and subtractions occurring in this equations are
meant to be instances of our special operation on the elliptic
curve. Thus we may identify the endomorphism τ of the curve
with a root of the quadratic equation

τ2 − (q + 1− n)τ + q = 0;

we also denote this root by τ . A famous result by Hasse ensures
that this root τ is never a real number. So we can write τ in the
form τ = a+ bδ for suitable a, b ∈ Z and

δ =

{√
m if m ≡ 2 or 3 (mod 4),

1+
√
m

2 if m ≡ 1 (mod 4)

8



Mathematics Competitions. Vol 33 No. 1. 2020

16

where m < 0 is squarefree.
The elliptic curve is said to be ordinary if gcd(q+1−n, q) = 1.

It is easily verified that this holds if and only if gcd(a, b) = 1.
The same theory which yields the result on the Frobenius en-
domorphism also ensures that in the case of an ordinary elliptic
curve, every endomorphism of the curve fulfills a quadratic equa-
tion whose square-free part of the discriminant is the same m,
so it can represented as a′+b′δ for the same δ for suitable a′ and
b′. The smallest positive b′ which occurs in this way is called the
conductor g of the endomorphism ring.

The construction ensures that g divide b; otherwise, a lin-
ear combination of τ and the endomorphism leading to g would
contradict the minimality of g.

We are now able to state Wittmann’s result.

Lemma 2 (Wittmann [5]). Let E and E′ be ordinary elliptic
curves over Fq with equal number of points with conductors of
the endomorphism rings g and g′, respectively. Write the kth
power of the complex number τ as τk = ak + bkδ for suitable ak,
bk ∈ Z.

Then the point groups of E and E′ over Fqk are isomorphic
if and only if

gcd
(
ak − 1,

bk
g

)
= gcd

(
ak − 1,

bk
g′

)
. (2)

Note that g and g′ divide bk for the same reason that g divides
b.

We emphasise that Wittmann’s result reduces the question
to a gcd problem in terms of the known quantities g and g′

involving the integers ak and bk arising from taking powers of
τ = a + bδ. In particular, the problem is completely solved for
given k because we can simply compute ak and bk and then
compare the gcds. For general k, however, we need to invest
more work. This work will no longer depend on the theory of

9
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elliptic curves; instead, we will use olympiad methods including
the Lifting the Exponent Lemma.

6 Sketch of the Solution Using Olympiad
Methods

6.1 Rewriting in Terms of Primes

The first step consists in translating (2) in terms of p-adic valu-
ations. It is clear that (2) is equivalent to

∀p prime: min
{
vp(ak−1), vp

(bk
g

)}
= min

{
vp(ak−1), vp

(bk
g′

)}
.

This trivially holds for those primes p for which vp(g) = vp(g
′).

We therefore restrict our attention to the set of primes

P := {p prime | vp(g) �= vp(g
′)}. (3)

So Wittmann’s condition (2) is equivalent to

∀p ∈ P : min
{
vp(ak − 1), vp

(bk
g

)}
= min

{
vp(ak − 1), vp

(bk
g′

)}
.

As the second elements on both sides are now guaranteed to be
different, the minima coincide if and only if they are equal to
the first element. Thus (2) is equivalent to

∀p ∈ P : vp(ak − 1) ≤ min
{
vp

(bk
g

)
, vp

(bk
g′

)}
.

We rewrite the valuations of quotients as differences of valuations
and see that the condition is equivalent to

∀p ∈ P : vp(ak − 1) ≤ vp(bk)−max{vp(g), vp(g′)}.

We summarise our findings in the following lemma.

10
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Lemma 3. With the notations of Lemma 2, the point groups of
E and E′ over Fqk are isomorphic if and only if

∀p ∈ P : vp(ak − 1) ≤ vp(bk)− sp

where P is defined in (3) and

sp := max{vp(g), vp(g′)}.

6.2 Relation to ak and bk

Fix p ∈ P. For simplicity, assume that p �= 2. The goal of this
section is to replace the quantities vp(ak−1) and vp(bk) occurring
in Lemma 3 by vp(a

k − 1) and vp(b
k). We first recall that by

definition, we have

(a+ bδ)k = ak + bkδ.

We write b = ptc and k = p�m for suitable integers t, c, � and m
with p � cm and � ≥ 0. Note that the fact that g and g′ divide
b and vp(g) �= vp(g

′) implies that t ≥ 1. The fact that we are
considering ordinary elliptic curves then implies that p does not
divide a.

The binomial theorem implies that

ak + bkδ = (a+ bδ)k = (a+ ptcδ)p
�m

= ak + p�+tmcak−1δ +
k∑

r=2

(
p�m

r

)
ak−rptrcrδr.

Careful counting of occurrences of factors p in the binomial coef-

ficients
(
p�m
r

)
—see the original study [2] for the details, in partic-

ular some annoying boundary cases—shows that all coefficients
of the last sum are divisible by p�+t+1. We conclude that

ak ≡ ak (mod p�+t+1),

bk ≡ p�+tmcak−1 (mod p�+t+1).

11
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As we know that p � mcak−1, this implies that

vp(bk) = �+ t and vp(ak − ak) ≥ �+ t+ 1. (4)

Lemma 4. Let p ∈ P be an odd prime. Then the condition

vp(ak − 1) ≤ vp(bk)− sp (5)

of Lemma 3 holds if and only if

vp(a
k − 1) ≤ vp(b) + vp(k)− sp. (6)

Note that the right side of (6) is non-negative because g | b
and g′ | b imply that sp ≤ vp(b).

Proof. We first consider the case that vp(a
k − 1) ≥ � + t + 1.

Writing

ak − 1 = (ak − ak) + (ak − 1)

and using (4) then shows that both summands on the right side
are divisible by p�+t+1 which immediately implies that the left
side is divisible by the same power of p. In other words,

vp(ak − 1) ≥ �+ t+1 = vp(b)+ vp(k)+ 1 > vp(bk) ≥ vp(bk)− sp,

where (4) has been used in the second inequality. We conclude
that neither (5) nor (6) holds in this case.

We now turn to the case that vp(a
k − 1) ≤ � + t. We again

consider the decomposition

ak − 1 = (ak − ak) + (ak − 1).

The first summand on the right side is divisible by p�+t+1 by (4),
but the second is not. This implies that vp(ak − 1) = vp(a

k − 1)
holds in this case. Combining this with (4) yields the assertion.

12
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6.3 Using the Lifting the Exponent Lemma

In this section, we use the Lifting the Exponent Lemma to ex-
press the quantity vp(a

k−1) in (6) to finally decide our question.
We still assume that p ∈ P is odd.

Denote the order of a modulo p by e, i.e., e is the minimal
positive exponent such that ae ≡ 1 (mod p).

If e � k, then ak �≡ 1 (mod p) by standard properties of order
and we have vp(a

k − 1) = 0. Thus (6) is fulfilled in this case.

Otherwise, we can use the Lifting the Exponent Lemma and
see that

vp(a
k−1) = vp((a

e)k/e−1) = vp(a
e−1)+vp

(k
e

)
= vp(a

e−1)+vp(k)−vp(e).

Thus (6) is equivalent to

vp(a
e − 1)− vp(e) ≤ vp(b)− sp.

Note that the order e of a modulo p divides ϕ(p) = p − 1 by
Fermat’s theorem; thus e must be coprime to p and thus vp(e) =
0.

We conclude that for odd p, the condition (6) does not hold
if and only if

e | k and vp(a
e − 1) > vp(b)− sp.

We summarise our findings (now also incorporating p = 2 for
completeness, see [2]).

Theorem ([2]). Let E and E′ be ordinary elliptic curves over
Fq with equal number of points with conductors of the endomor-
phism rings g and g′, respectively, τ = a+bδ for suitable a, b ∈ Z
and P = {p prime | vp(g) �= vp(g

′)}. Let k ≥ 1 be an integer. If
2 ∈ P and v2(b) = 1, assume that k is odd.
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Then the point groups of E and E′ over Fqk are not isomor-
phic if and only if

∃p ∈ P \ {2} : e := ordp(a) | k and vp(a
e − 1) > vp(b)− sp

or

2 ∈ P and e := ord4(a) | k and v2(a
e − 1)− v2(e) > v2(b)− s2

or
2 ∈ P and v2(k) = 0 and s2 = v2(b).

The case of even k has been excluded from the statement of
the theorem for ease of presentation; the case can however be
decided, see [2].
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. 
 
1 Introduction 
In this article, by the term inversion we mean a specific geometric 
transformation that is defined below. It is a powerful tool for solving 
problems, especially those that involve many circles. Using inversion, 
some of the circles may become lines. Roughly speaking, the 
inversion may transform problems for circles into problems for lines. 
 
Definition. Let O be a point in the plane and r be a positive number. 
An inversion with center O and coefficient r is a transformation of the 
plane (except for point O) that transforms every point 𝑀𝑀 ≠ 0 onto the 
point 𝑀𝑀! ∈ 𝑂𝑂𝑀𝑀 such that 𝑂𝑂𝑀𝑀.𝑂𝑂𝑀𝑀! = 𝑟𝑟" (Fig. 1). The circle ω with 
center O and radius r is called a circle of inversion. Points M and M' 
are called inverse to each other. 

 
1 This is a version of a talk for the section “Building Bridges between Problems of 

Mathematical Research and Competitions” of the 8-th Congress of WFNMC, Graz, July 
2018. 
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The properties of inversion in a circle are studied in some geometry 
books, for example Bankov, Vitanov, 2003; Johnson, 1960, etc. The 
main properties of inversion are given below. 
 
(i). Inversion is a one-to-one correspondence between the plane 
without the center of the inversion and itself. 
 
(ii). If a point lies on the circle of inversion, it is inverse to itself. 
 
(iii). If a point is outside the circle of inversion, its inverse point is 
inside the circle of inversion, and vice versa, if a point is inside the 
circle of inversion, its inverse point is outside the circle of inversion. 
 
(iv). If a point M is outside the circle of inversion, its inverse point is 
the midpoint of the chord formed by the tangent points of the tangent 
lines from M to the circle of inversion (Fig. 2).  
 

 
 

O MM'

Fig. 1: Definition of inversion

ω

O MM'

Fig. 2: Image of a point

ω
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(v). Let the points M, N be different from O and points O, M, N be 
non-collinear. If the inverse points of M and N are 𝑀𝑀′ and 𝑁𝑁′ 
respectively, then triangles 𝑂𝑂𝑀𝑀𝑁𝑁	and 𝑂𝑂𝑁𝑁′𝑀𝑀′ are similar (Fig. 3) in 
such a way that ∠𝑂𝑂𝑀𝑀𝑁𝑁 = ∠𝑂𝑂𝑁𝑁′𝑀𝑀′ and ∠𝑂𝑂𝑁𝑁𝑀𝑀 = ∠𝑂𝑂𝑀𝑀′𝑁𝑁′. 
 

 
 
The so called inversion distance formula follows from property (v), 
namely 

  𝑀𝑀!𝑁𝑁! = #!

$%.$'
	 ∙ 𝑀𝑀𝑁𝑁  

 
or equivalently 

   𝑀𝑀𝑁𝑁 = #!

$%".$'"
	 ∙ 𝑀𝑀′𝑁𝑁′. 

 
(vi). A line passing through the center of inversion is transformed into 
itself. 
 
(vii). A circle not passing through the center of inversion is 
transformed into a circle not passing through the center of inversion. 
The circle and its image are homothetic with center at the center of 
inversion. 
 
(viii). A line not passing through the center of inversion is transformed 
into a circle passing through the center of inversion, and vice versa, a 

O M M'

N'

N

ω

Fig. 3: Similar triangles
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circle passing through the center of inversion is transformed into a line 
not passing through the center of inversion. 
It is easy to see that if k is a circle passing through the center of 
inversion and l is its inverse image (see property (viii) above), then  
the interior points of k are transformed to the one side of l, and the 
exterior points of k to the other side of l.  
 
(ix). For any two circles without common point there is an inversion 
that transforms these circles into two concentric circles. 
 
2 Lines and Circles 
 
Lines and circles are different figures in Euclidean geometry, because 
they have different geometrical properties. Sometimes, because of 
property (viii) above, lines and circles are considered alike. Examples 
are presented below. 
 
Here is a problem from the Federal Mathematics Competition in 
Germany, 1980. 
 
Problem 1 Let M be a set of 2𝑛𝑛 + 3 (n is a positive integer) points in 
the plane such that no three of them lie on a straight line and no four 
of them lie on a circle. Prove that there is a circle passing through three 
of the points of M that contains exactly n of the other points in its 
interior (and the other n are outside the circle).  
 
Solution Let A and B be points of M, such that all other 2𝑛𝑛 + 1 points 
of M lie on one and the same semi-plane with a boundary line AB. 
Since no four of the points of M lie on a circle, all angles ∠𝐴𝐴𝐴𝐴𝐴𝐴, where 
𝐴𝐴 ∈ 𝑀𝑀\{𝐴𝐴, 𝐴𝐴}, are different. Arrange the points of  𝑀𝑀\{𝐴𝐴, 𝐴𝐴}  in a row 
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𝑃𝑃(, 𝑃𝑃", 𝑃𝑃), … , 𝑃𝑃"*+( in such a way that ∠𝐴𝐴𝑃𝑃(𝐵𝐵 < ∠𝐴𝐴𝑃𝑃"𝐵𝐵 < ∠𝐴𝐴𝑃𝑃)𝐵𝐵 <
⋯ 	∠𝐴𝐴𝑃𝑃"*+(𝐵𝐵. The circle passing through the points 𝐴𝐴, 𝐵𝐵, 𝑃𝑃*+( has the 
required property, because it contains the points   
𝑃𝑃*+", 𝑃𝑃*+), … , 𝑃𝑃"*+( in its interior, but the points 𝑃𝑃(, 𝑃𝑃", … , 𝑃𝑃* are 
outside the circle. 
 
The next problem looks similar but considers a line instead of a circle. 
 
Problem 2 Let M be a set of 2𝑛𝑛 + 2 (n is a positive integer) points on 
the plane such that no three of them lie on a straight line. Prove that 
there is a line passing through two of the points of M, such that exactly 
n of the other points lie on one side of the line (and the other n are on 
the other side of the line). 
 
Solution Let p be a line passing through a point A of M, such that all 
other 2𝑛𝑛 + 1 points of M are in one and the same semi-plane with 
boundary p. Start rotating p about A counterclockwise. Since no three 
of the points of M lie on a line, the rotating line p passes consecutively 
through the points 𝑃𝑃(, 𝑃𝑃", 𝑃𝑃), … , 𝑃𝑃"*+( of 𝑀𝑀\{𝐴𝐴}. The line passing 
through the points A and 𝑃𝑃*+( has the required property, because the 
points 𝑃𝑃*+", 𝑃𝑃*+), … , 𝑃𝑃"*+( are on one side of this line, but the points   
𝑃𝑃(, 𝑃𝑃", … , 𝑃𝑃*		are on the other side. 
 
These two problems are equivalent. More interesting is to show that 
the statement of Problem 1 follows from the statement of Problem 2. 
Certainly, let M be a set of 2𝑛𝑛 + 3 points on the plane such that no 
three of them lie on a straight line and no four of them lie on a circle. 
Choose a point O of M and consider inversion with center O and an 
arbitrary radius r. Denote by N the set of the inverse images of the 
remaining 2𝑛𝑛 + 2 points of M. Since no three of them lie on a line, 
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according to the statement of Problem 2 there is a line p passing 
through two of the points of N, such that exactly 𝑛𝑛	of the other points 
lie on one side of the line (and the other 𝑛𝑛	are on the other side of the 
line). The reverse inverse image of p is a circle c that has the required 
property. 
 
The same method is used to transform Miquel’s theorem to the so-
called Miquel’s Six Circle Theorem (Bankov and Vitanov, 2003). 
These two theorems, cited below, are among a set of wonderful  
classical theorems in plane geometry. There are several theorems 
named after Auguste Miquel, a French mathematician from the 19th 
century. Only one of them can be found in Miquel’s publications 
(Miquel, 1838), namely: 
 
 
Theorem 1 (Miquel). Let 𝐴𝐴(𝐴𝐴"𝐴𝐴) be a triangle, with points	𝑃𝑃(, 𝑃𝑃" and 
𝑃𝑃) on the lines 𝐴𝐴"𝐴𝐴), 𝐴𝐴(𝐴𝐴), and 𝐴𝐴(𝐴𝐴" respectively (Fig. 4). Then the 
three circumcircles of triangles 𝐴𝐴(𝑃𝑃"𝑃𝑃), 𝑃𝑃(𝐴𝐴"𝑃𝑃), and 𝑃𝑃(𝑃𝑃"𝐴𝐴) intersect 
in a single point P (called the Miquel point).  
 

 
 

P

P1

P2

P3
A1 A2

A3

Fig. 4: ’s theorem Miquel
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Proof. Let 𝑃𝑃 be the point of intersection of the circumcircles of 
triangles 𝐴𝐴(𝑃𝑃"𝑃𝑃) and 𝑃𝑃(𝑃𝑃"𝐴𝐴) that is different from 𝑃𝑃". Then 
∠𝑃𝑃𝑃𝑃"𝐴𝐴( = 180° − ∠𝑃𝑃𝑃𝑃)𝐴𝐴( or ∠𝑃𝑃𝑃𝑃"𝐴𝐴( = ∠𝑃𝑃𝑃𝑃)𝐴𝐴( (depending on the 
positions of the points 𝐴𝐴(, 𝑃𝑃, 𝑃𝑃", and 𝑃𝑃)  on the circle). Both equations 
show that the angle between the lines 𝐴𝐴(𝐴𝐴) and 𝑃𝑃𝑃𝑃" and the lines 
𝐴𝐴(𝐴𝐴"	and 𝑃𝑃𝑃𝑃)	are equal, i.e. ∠(𝐴𝐴(𝐴𝐴), 𝑃𝑃𝑃𝑃") = ∠(𝐴𝐴(𝐴𝐴", 𝑃𝑃𝑃𝑃)). In the 
same way, using the other circle, we obtain that ∠(𝐴𝐴(𝐴𝐴), 𝑃𝑃𝑃𝑃") =
∠(𝐴𝐴"𝐴𝐴), 𝑃𝑃𝑃𝑃(). Therefore ∠(𝐴𝐴"𝐴𝐴), 𝑃𝑃𝑃𝑃() = ∠(𝐴𝐴(𝐴𝐴", 𝑃𝑃𝑃𝑃)). It follows 
from this that either ∠𝑃𝑃𝑃𝑃(𝐴𝐴" = 180° − ∠𝑃𝑃𝑃𝑃)𝐴𝐴"	or ∠𝑃𝑃𝑃𝑃(𝐴𝐴" =
∠𝑃𝑃𝑃𝑃)𝐴𝐴". Any of these equations show that 𝑃𝑃	lies on the circumcircle 
of triangle 𝑃𝑃(𝐴𝐴"𝑃𝑃). 
 
Theorem 2 (Miquel’s six circle theorem) Four points, A, B, C, and 
D are given on circle o. Four other circles k, l, m, and n pass through 
each adjacent pair of these points. Then the alternate intersections of 
these four circles at E, F, G and H lie on a common circle (or on a 
common line) (Fig. 5).  
 

 
 
 

k

l
A

B

m

C

D

n

E

FG
H

o

Fig. Miquel's six circle5:  theorem
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These two theorems are equivalent. Here are arguments to show that 
Theorem 2 follows from Theorem 1. Consider the inversion with 
center A and an arbitrary coefficient r. The inverse images of the 
figures are denoted with the same letter with subindex 1. From 
property (viii) of inversion it follows that 𝑘𝑘( (the image of k) is a line 
containing the points 𝐷𝐷(, 𝐻𝐻(, and 𝐸𝐸( (Fig. 6); 𝑙𝑙( is a line containing the 
points 𝐵𝐵(, 	𝐹𝐹(	and 	𝐸𝐸(;	𝑜𝑜(	is a line containing the points 𝐷𝐷(, 𝐶𝐶(, and 𝐵𝐵(. 
Also 𝑚𝑚( is a circle containing the points 𝐵𝐵(, 𝐹𝐹(, 𝐺𝐺(, and 𝐶𝐶(; and 𝑛𝑛( is 
a circle containing the points 𝐷𝐷(, 𝐻𝐻(, 𝐺𝐺(, and 𝐶𝐶(.  
 
According to Theorem 1, points 𝐸𝐸(, 𝐹𝐹(, 𝐺𝐺(, and 𝐻𝐻(	lie on a common 
circle. Therefore, points E, F, G and H also lie on a common circle (or 
on a common line).  

 
 
The above reasoning shows how a suitable inversion may transform a 
problem concerning “many” circles to a problem that contains “fewer 
circles but more lines”. Assuming that problems for lines are easier to 
solve, the inverse transformation gives a solution to the original 
problem. 
 
 

k1

l1 o1

n1

m1

B1

G1

C1

H1

F1

E1 D1

Fig. 6: Inversion of Fig. 5
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3 Two Famous Results from Plane Geometry 
Miquel’s theorems present classical results from plane geometry. Here 
are two other examples of beautiful geometrical theorems connected 
to the names of well-known mathematicians. The reason to bring 
attention to them is that inversion may help to prove them. 

The first example is connected with the figure known as the arbelos. 
It consists of three collinear points A, B, and C, together with three 
semicircles with diameters AB, AC, and BC, as shown in Figure 7. It 
was named after a shoemaker’s knife because its shape resembles it. 
Many interesting properties of the arbelos have been studied by 
mathematicians (Bankoff, 1974; Cadwell, 1966; Hood, 1961).  

Here attention is brought to the statement that is believed to have been 
proven by Pappus. 

Theorem (Pappus) Consider a chain of circles 𝑐𝑐(, 𝑐𝑐", … , 𝑐𝑐*, …  
inscribed in an arbelos as shown in Figure 8. (Circle 𝑐𝑐( is tangent to 
the three semicircles of the arbelos, for 𝑛𝑛 > 1, 𝑐𝑐*  is tangent to two of 
the semicircles of the arbelos and circle 𝑐𝑐*,(.) For any 𝑛𝑛 = 1,2, … 
denote by 𝑟𝑟* the radius of 𝑐𝑐* and by 𝑦𝑦* the distance from the center 
of 𝑐𝑐* to the baseline AB. Then 𝑦𝑦* = 2𝑛𝑛𝑟𝑟*, for 𝑛𝑛 =1, 2, …, 𝑛𝑛 > 1  

C BA
Fig. 7: Arbelos
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Nowadays the proof of the theorem is relatively easy if we consider 
the inversion with center A that transforms B in C (i.e. the radius of 
the inversion is 𝑟𝑟 = √𝐴𝐴𝐴𝐴. 𝐴𝐴𝐴𝐴). The inversion transforms the 
semicircle with diameter AB into a ray with origin C that is 
perpendicular to AB. This inversion transforms the semicircle with 
diameter AC into a ray with origin B that is perpendicular to AB. It 
also transforms the semicircle with diameter BC into itself. Then the  
chain 𝑐𝑐(, 𝑐𝑐", … , 𝑐𝑐*, … is transformed into a chain  𝑐𝑐(′, 𝑐𝑐"′, … , 𝑐𝑐*′, …  of 
sequentially tangent equal circles that are tangent to the two rays as 
shown on Figure 9. If 𝑟𝑟*′ is the radius of  𝑐𝑐*′  and 𝑦𝑦*′ is the distance 
from the center of 𝑐𝑐*′  to the baseline AB, it is clear that  𝑦𝑦*′=2𝑛𝑛𝑟𝑟*′. 
We can now use property (vii) of inversion that states that the circle 
and its inversion image are homothetic with center in the center of 
inversion to obtain the result. 
 

 

C BA
Fig. 8: Pappus’ theorem

c3 c2
c1

C BA
Fig. 9: Proof of Pappus’ theorem

c3'

c2'

c1'
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Pappus of Alexandria was one of the last great Greek mathematicians 
of antiquity. He lived in the fourth century. This means that Pappus 
could not have made use of this method, since inversion was 
discovered 15 centuries after he lived. In 1981 Bankoff (Bankoff, 
1981) wrote an interesting essay on how Pappus could have proven 
this theorem. 
The second example is connected to the Swiss mathematician of the 
19th century Jakob Steiner. He considered two circles 𝑘𝑘( and 𝑘𝑘", such 
that 𝑘𝑘" is in the interior of 𝑘𝑘(. In the area between the two circles a 
chain of touching circles 𝑐𝑐(, 𝑐𝑐", … , 𝑐𝑐* is such that each circle is tangent 
to 𝑘𝑘(, 𝑘𝑘", and both of its neighbors (Fig. 10). In some cases it is 
possible to find n such that 𝑐𝑐* is tangent to 𝑘𝑘(, 𝑘𝑘", 𝑐𝑐*,(, and 𝑐𝑐(; in 
some cases this is not possible. This depends on the radii of 𝑘𝑘(, 𝑘𝑘"	and 
their mutual position. 
 

 
 
Theorem (Steiner) In the above configuration, let 𝑘𝑘(, 𝑘𝑘"	be circles 
such that there is a chain of circles 𝑐𝑐(, 𝑐𝑐", … , 𝑐𝑐*  such that 𝑐𝑐* is tangent 
to 𝑘𝑘(, 𝑘𝑘", 𝑐𝑐*,(, and	𝑐𝑐(. Then these chains are infinitely many. This 
means that for any circle 𝑡𝑡( that is tangent to 𝑘𝑘(, 𝑘𝑘", there is a chain of 
touching circles 𝑡𝑡(, 𝑡𝑡", … , 𝑡𝑡* such that each circle is tangent to 𝑘𝑘(, 𝑘𝑘", 
and both of its neighbors and 𝑡𝑡* is tangent to 𝑘𝑘(,	𝑘𝑘", 𝑡𝑡*,(, and 𝑡𝑡(. 

Fig. 10: ’s theoremSteiner

k2 k1

c1

c2

c3
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Steiner was more fortunate than Pappus because in his time inversion 
was well known. Apply property (ix) to find the inversion that 
transforms 𝑘𝑘(, 𝑘𝑘"	into two concentric circles 𝑘𝑘(′, 𝑘𝑘"′. For 𝑘𝑘(′, 𝑘𝑘"′ the 
theorem is obvious. Then we use the inverse of this inversion. 
 

The question that remains is under which conditions does there exist 
a chain of touching circles 𝑐𝑐(, 𝑐𝑐", … , 𝑐𝑐* such that 𝑐𝑐* is tangent to 𝑘𝑘(, 
𝑘𝑘", 𝑐𝑐*,(, and 𝑐𝑐(. We do not discuss this here. The answer can be found 
in Prassolov, 2006.  
 
4 Inversion in Competition Problems 
 
There are many examples of competition problems that can be solved 
using inversion (see, for example, Chapter 8 of Evan, 2016). This fact 
shows that the statement “geometry becomes less popular in school 
mathematics and in competitions” is only a myth. 
 
The beauty of competition problems is that they do not directly refer 
to inversion in the statement of the problem. There is not much 
creativity in a situation like this: “A geometric construction and its 
image under certain inversion is given. Prove this and this.” In the 
problems that I refer to the inversion is not given. One should discover 
the inversion that may help and apply it. This needs a lot of creativity. 
Such problems are perfect examples of the beauty of geometry. 
 
I will cite only two problems to give an opportunity to the reader to 
experience this beauty. 
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Problem 3 Four circles k1, k2, k3, and k4 are given in such a way that 
k1 is tangent externally to k2 and k4 in points A and D respectively, and 
k3 is tangent externally to k2 and k4 in points B and C respectively. 
Prove that points A, B, C, and D lie on a common circle. 

Hint Consider inversion with center D and an arbitrary coefficient. 
The problem is transformed into the following easier problem: Let p 
and q be parallel lines, and A and C be points on p and q respectively. 
Let k1 and k2 be circles externally tangent in point B such that k1 is 
tangent to p in A and k2 is tangent to q in C. Prove that A, B, and C lie 
on a common line. 

Problem 4 (Russian Mathematical Olympiad, 1995) A semicircle 
with diameter AB and center O is given. A line intersects the 
semicircle at C and D, and line AB at M (𝑀𝑀𝑀𝑀 < 𝑀𝑀𝑀𝑀,	𝑀𝑀𝑀𝑀 < 𝑀𝑀𝑀𝑀). Let 
K be the second point of intersection of the circumcircles of triangles 
AOC and DOB. Prove that ∠𝑀𝑀𝑀𝑀𝑀𝑀 = 90°. 

Hint Consider the inversion with center 𝑀𝑀 and radius 𝑟𝑟 = 𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀. 
By property (ii) of inversion each of the points A, B, C, and D is 
inverse to itself. The image of the circle through A, 𝑀𝑀, and C is the 
line AC and the image of the circle through D, 𝑀𝑀, and B is the line 
DB. Hence, the inversion point of K is the intersection 𝑀𝑀( of lines AC 
and DB. Also, the inverse point of M is the intersection 𝑀𝑀( of line 
AB with the circumcircle of triangle ∆𝑀𝑀𝑀𝑀𝑀𝑀. Then the image of line 
MK is the circumcircle of triangle ∆𝑀𝑀𝑀𝑀(𝑀𝑀(. According to property 
(v) of inversion ∠𝑀𝑀𝑀𝑀𝑀𝑀 = 90°  if and only if  ∠𝑀𝑀(𝑀𝑀(𝑀𝑀 = 90°. To 
prove the last equation show that the circumcircle of triangle ∆𝑀𝑀𝑀𝑀𝑀𝑀 
is the nine-point circle of  ∆𝑀𝑀𝑀𝑀𝑀𝑀(.  (The nine-point circle for a 
triangle is the circle that contains the feet of the altitudes of the 
triangle and the midpoints of its sides.) 
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1. Introduction 

Starting in 2015, the Algebra exams of the third round and TST of the 
Iranian Mathematical Olympiad have contained some interesting 
problems about polynomials. Most of these problems are original as 
well as challenging. This article outlines the conceptual framework 
concerning ideas about polynomials that touch on some strong points 
in tandem with some points concerning my teaching experiences. 
Having said this, the kernel of ideas for this article is to introduce the 
readers to the Iranian approach to mathematical competitions with 
exclusive regard to algebra and polynomials. 

 

2.  Finding polynomials and examining coefficients 

The most generic approach to teaching polynomials is to start with 
coefficients and identities. Hence, a good entry point into our topic is 
to start with a polynomial equation. However, although the central 
idea of this problem seems too easy, only four students solved the 
problem completely. It was partly because this problem was the fifth 
problem of an exam with six problems that took six hours! The author 
of this problem was Mojtaba Zare who received a gold medal at IMO 
2015 and immediately started to propose problems and teach algebra 
for the Mathematical Olympiad curricula. Students can find very 
many interesting problems concerning finding polynomials and 
examining the coefficients in Andreescu, et al (2019). 

Problem 1. (3rd round Iranian Mathematical Olympiad, 2015, Algebra 
exam, Problem 5) Find all polynomials 𝑃𝑃(𝑥𝑥) with real coefficients 
satisfying 𝑃𝑃(5𝑥𝑥)! − 3 = 𝑃𝑃(5𝑥𝑥! + 1), whenever: 
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i.  𝑃𝑃(0) ≠ 0, 
ii. 𝑃𝑃(0) = 0. 

Solution.  Suppose that 𝑃𝑃(𝑥𝑥) is not constant. Let deg𝑃𝑃 (𝑥𝑥) =
𝑑𝑑, 𝑃𝑃(𝑥𝑥) = 𝑎𝑎" + 𝑎𝑎#𝑥𝑥 +⋯+ 𝑎𝑎$𝑥𝑥$ . Comparing the coefficients of both 
sides we find that  𝑎𝑎$ = 5%$ . Then, we can prove by induction that all 
the coefficients of 𝑃𝑃(𝑥𝑥) are rational. Now, considering the equation 

5𝑥𝑥! + 1 = 5𝑥𝑥, we have that 𝑟𝑟 = &'√&
#"

 is one of the roots. Since 𝑃𝑃(𝑥𝑥) 

has rational coefficients, it is easy to deduce  𝑃𝑃(5𝑟𝑟) = 𝑃𝑃 7&'√&
!
8 =

𝑐𝑐 + 𝑑𝑑√5, for some rational numbers 𝑐𝑐, 𝑑𝑑. Further, putting 𝑥𝑥 = 𝑟𝑟 in the 
original equation, we can find that 𝑃𝑃(5𝑟𝑟)! − 3 = 𝑃𝑃(5𝑟𝑟! + 1). That is 

𝑃𝑃(5𝑟𝑟)! − 𝑃𝑃(5𝑟𝑟) − 3 = 0. Hence, 𝑃𝑃(5𝑟𝑟) = #'√#)
!
. Impossible!  

Remark. As you have seen, this solution doesn’t need the condition 
on 𝑃𝑃(0). During the meeting of algebra team, the proposer outlined 
the following proof.  

It is easy to deduce 𝑃𝑃(5𝑥𝑥)! = 𝑃𝑃(−5𝑥𝑥)!. Thus, 𝑃𝑃(𝑥𝑥) is either odd or 
even. Assume the latter, then 𝑃𝑃(𝑥𝑥) = 𝑄𝑄(𝑥𝑥!), for some polynomial 
𝑄𝑄(𝑥𝑥). Hence, rewrite the original equation as 

	𝑃𝑃(𝑥𝑥)! − 3 = 𝑃𝑃=
𝑥𝑥!

5
+ 1>. 

Since 𝑃𝑃(𝑥𝑥) is a polynomial in 𝑥𝑥!, we can assume that 𝑃𝑃(𝑥𝑥) =

𝑅𝑅 7*
!

&
+ 18, for some polynomial 𝑅𝑅(𝑥𝑥). Hence, 
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𝑅𝑅"
𝑥𝑥!

5 + 1'
!

= 𝑅𝑅

⎝

⎜
⎛,
𝑥𝑥!
5 + 1-

!

5 + 1

⎠

⎟
⎞
. 

Putting 𝑡𝑡 = *!

&
+ 1, then 𝑅𝑅(𝑡𝑡)! − 3 = 𝑅𝑅 7+

!

&
+ 18 and deg𝑅𝑅(𝑥𝑥) =

#
!
deg𝑃𝑃(𝑥𝑥). Hence, continuing this way, we shall face an infinite 

descent unless 𝑃𝑃(0) = 0. Therefore, the first case would be reduced 
to the second case.  

Assuming1 now the second case, define the following sequence 𝑎𝑎" =

0, 𝑎𝑎,'# = 1 +
-"!

&
. We can prove by induction that 𝑎𝑎. ∈ [1, 2), for 

each positive integer 𝑘𝑘 ≥ 1. Now, define the sequence 𝑏𝑏, = 𝑃𝑃(𝑎𝑎,). 
Putting 𝑥𝑥 = 𝑎𝑎, in the original equation, we can find that 𝑏𝑏,'# = 𝑏𝑏,! −
3. It is clear that for 𝑛𝑛 ≥ 1, the sequence assumes positive integer 
values and 𝑏𝑏,'# > 𝑏𝑏, for each 𝑛𝑛 ≥ 1. Thus lim

,→'0
𝑏𝑏, = +∞,  On the 

other hand, since 𝑃𝑃(𝑥𝑥) is a polynomial, 𝑃𝑃([1, 2)) is bounded. That is, 
𝑏𝑏, should be bounded, which yields a contradiction. 

The next problem is selected from our 2017 TST. I was the author of 
this problem. I thought that it was a very easy problem. But, from our 
17 gold medalists, only 6 completely solved it! Most of the students 
had some computations concerning the coefficients but had not taken 
this idea further. 

 
1 This part of proof is the refined version of a proof we find in an exam paper. Unfortunately, 
this student just solved the second part, assuming 𝑃𝑃(0) = 0. Thanks to Mojtaba Zare for 
sending the ideas from the exam paper.  
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Problem 2. ( 2017 Iranian TST, Test 3, Problem 5) Let {𝑐𝑐7}78"
0  be a 

sequence of non-negative rational numbers such that 𝑐𝑐!"#9 > 0. 
Define the sequence of polynomials such that: 

       𝑃𝑃%#(𝑥𝑥) = 0, 𝑃𝑃#(𝑥𝑥) = 1	, 𝑃𝑃,'#(𝑥𝑥) = 𝑥𝑥𝑃𝑃,(𝑥𝑥) + 𝑐𝑐,𝑃𝑃,%#(𝑥𝑥).  

Prove that for all 𝑛𝑛 > 2017 there does not exist an integer 𝑛𝑛 such that 
𝑃𝑃!,(𝑥𝑥) = 𝑃𝑃,(𝑥𝑥! + 𝑐𝑐) for some rational number 𝑐𝑐. 

Solution. It  could immediately be deduced that: 
𝑃𝑃$(𝑥𝑥) = 𝑥𝑥$ + (𝑐𝑐# + 𝑐𝑐! +⋯+ 𝑐𝑐$%#)𝑥𝑥$%#

+ (𝑐𝑐)𝑐𝑐# + 𝑐𝑐:𝑐𝑐# + 𝑐𝑐:𝑐𝑐! +⋯+ 𝑐𝑐$%#𝑐𝑐$%!)𝑥𝑥$%! +⋯. 

The coefficient of 𝑥𝑥$%! could be written as ∑ 𝑐𝑐. ∑ 𝑐𝑐;.%!
;8#

$%#
.8)  .  This is 

also equal to 

            #
!
((𝑐𝑐# + 𝑐𝑐! +⋯+ 𝑐𝑐$%#)! − ∑ 𝑐𝑐.!) − ∑ 𝑐𝑐.𝑐𝑐.'#

$%!
.8#

$%#
.8# . 

Now, assume by contradiction that there is such an 𝑛𝑛. By comparing 
the coefficients of 𝑥𝑥!,%#, 𝑥𝑥!,%! we find that: 

𝑐𝑐 = #
,
∑ 𝑐𝑐.!,%#

.%#  , 

                ∑ 𝑐𝑐. ∑ 𝑐𝑐;.%!
;8#

!,%#
.8) = ,(,%#)

!
𝑐𝑐! + ∑ 𝑐𝑐.,%#

.8# . 

Substituting the first equality into the second one, we find that 

       #
,
(∑ 𝑐𝑐.!,%#

.%# )! = ∑ 𝑐𝑐.! + 2∑ 𝑐𝑐.𝑐𝑐.'#
!,%!
.8#

!,%#
.8# + 2∑ 𝑐𝑐. 	(∗),%#

.8# . 

 Now we prove that the above equality is wrong!  

Note that, by the Cauchy-Schwartz inequality, we have: 
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1
𝑛𝑛
RS 𝑐𝑐.

!,%#

.%#

T

!

≤ 𝑐𝑐#! +S(𝑐𝑐!.'# + 𝑐𝑐!.)!
,%#

.8#

. 

And 

1
𝑛𝑛
RS 𝑐𝑐.

!,%#

.%#

T

!

≤ 𝑐𝑐!,%#
! +S(𝑐𝑐!.%# + 𝑐𝑐!.)!

,%#

.8#

. 

This yields: 

 

2
𝑛𝑛
RS 𝑐𝑐.

!,%#

.%#

T

!

≤ 2 S 𝑐𝑐.! + 2 S 𝑐𝑐.𝑐𝑐.'#

!,%!

.8#

!,%#

.8#

. 

Applying the resulting inequality to (∗) we find that ∑ 𝑐𝑐.𝑐𝑐.'#
!,%!
.8# +

2∑ 𝑐𝑐. 	≤ 0,%#
.8# . Since 𝑐𝑐. ≥ 0 and 𝑐𝑐!"#9 > 0 this is impossible! We 

are done! 
 

3. On roots of polynomials 

The second important topic in teaching polynomials concerns roots. 
Though most of the students solved many problems on Vieta's formula 
and the Intermediate Value Theorem (IVT), they found these two 
problems very hard. It seems that there were some weaknesses in their 
arguments or lack of innovative ideas.  

The first problem was proposed by me for the final exam of Seemurg 
Training Camp of Nations (STCN) that was held in January 2019 
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between 6 countries2 around the world. Only 8 out of 124 students 
solved this problem. The reason was they were not brave enough to 
deal with the complexity which emerges after writing Vieta's formula 
for the roots.  

Problem 3. (2019 STCN, Final Exam, Problem 4)3 Assume that all 
the roots of 𝑃𝑃(𝑥𝑥) = 𝑥𝑥$ − 𝑎𝑎#𝑥𝑥$%# +⋯+ (−1)$𝑎𝑎$ lie in [0,1]. Prove 
that for all 𝑘𝑘 = 1,2, . . , 𝑑𝑑 we have 

                   𝑎𝑎. − 𝑎𝑎.'# +⋯+ (−1)$%.𝑎𝑎$ ≥ 0. 

Solution. Let us consider 𝑃𝑃(𝑥𝑥) = (𝑥𝑥 − 𝑥𝑥#)… (𝑥𝑥 − 𝑥𝑥$) where 𝑥𝑥7 ∈
[0,1]. Note that, by Vieta’s formula we have: 

𝑎𝑎7 = 𝑎𝑎7(𝑥𝑥#, 𝑥𝑥!, … , 𝑥𝑥$) = S 𝑥𝑥<# …𝑥𝑥<$
#=<#,…,<$=$

. 

Now we prove the statement of problem by induction on 𝑑𝑑. The case 
𝑑𝑑 = 1 is obvious. Note that: 

                  𝑃𝑃(1) = 1 − 𝑎𝑎# + 𝑎𝑎! − ⋯+ (−1)$𝑎𝑎$ ≥ 0.   

Thus:  

        (−1)%𝑎𝑎% + (−1)%&'𝑎𝑎%&' +⋯+ (−1)(𝑎𝑎( = 𝑃𝑃(1) − 1 + 𝑎𝑎' − 𝑎𝑎) +⋯+ (−1)%𝑎𝑎%*'.  

Therefore, the desired inequality leads to: 

                   (−1).(𝑃𝑃(1) − 1 + 𝑎𝑎# − 𝑎𝑎! +⋯+ (−1).𝑎𝑎.%#) ≥ 0. 

 
2 The participating countries were Azerbaijan, Bangladesh, Iran, Mexico, Mongolia, and 
Tajikstan.  
3 Two months later this problem appeared in the problems section of Kvant(2019/1) journal as 
problem M2544.  
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Assume the statement of the problem holds true for all positive 
integers less than or equal to 𝑑𝑑. Now we must prove for the polynomial  

𝑃𝑃(𝑥𝑥) = (𝑥𝑥 − 𝑥𝑥#)⋯(𝑥𝑥 − 𝑥𝑥$)(𝑥𝑥 − 𝑥𝑥$'#)
= 𝑥𝑥$'# − 𝑏𝑏#𝑥𝑥$ +⋯+ (−1)$'#𝑏𝑏$'#, 

that: 𝑏𝑏. − 𝑏𝑏.'# +⋯+ (−1)$'#%.𝑏𝑏$'# ≥ 0 for all 𝑘𝑘 = 1,… , 𝑑𝑑 + 1. 
Note that: 

𝑏𝑏7 = 𝑏𝑏7(𝑥𝑥#, … , 𝑥𝑥$'#) = 𝑎𝑎7(𝑥𝑥#, 𝑥𝑥!, … , 𝑥𝑥$) + 𝑥𝑥$'#𝑎𝑎7%#(𝑥𝑥#, 𝑥𝑥!, … , 𝑥𝑥$). 

According to the above fact, we must prove: 

(−1).(𝑄𝑄(1) − 1 + 𝑏𝑏# − 𝑏𝑏! +⋯+ Z−1).𝑏𝑏.%#[
= (−1).(𝑄𝑄(1) − 1 + 𝑎𝑎# + 𝑥𝑥$'# − 𝑎𝑎! − 𝑥𝑥$'#𝑎𝑎#)
+ ⋯+ (−1).(𝑎𝑎.%# + 𝑥𝑥$'#𝑎𝑎.%!) ≥ 0. 

Since 𝑄𝑄(1) = (1 − 𝑥𝑥$'#)𝑃𝑃(1) one can rewrite the above inequality 
as: 

(−1).(1 − 𝑥𝑥$'#)(𝑃𝑃(1) − 1 + 𝑎𝑎# − 𝑎𝑎! +⋯+ (−1).𝑎𝑎.%#) ≥ 0,	
 

which is true, due to the induction hypothesis.  

Although the next problem has a simple statement, it needs insightful 
knowledge about the IVT and the notion of multiple roots. Most of the 
contestants did not consider the fact that in the neighborhood of a root 
𝑟𝑟, we face a change in the sign of the polynomial unless the root is 
double or has an even number of occurrences. That is, 𝑃𝑃(𝑥𝑥) =	
(𝑥𝑥 − 𝑟𝑟)!-𝑄𝑄(𝑥𝑥), for some natural number 𝑎𝑎 and some polynomial 
𝑄𝑄(𝑥𝑥) such that 𝑄𝑄(𝑟𝑟) ≠ 0. 
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Problem 4. (3rd round Iranian Mathematical Olympiad, 2019, Algebra 
exam, Midterm, Problem 3) For each positive integer 𝑑𝑑, find all open 
intervals 𝐼𝐼 ⊆ ℝ, of largest length, such that for any choice of 
𝑎𝑎", … , 𝑎𝑎!$%# ∈ 𝐼𝐼 the polynomial 𝑃𝑃(𝑥𝑥) = 𝑥𝑥!$ + 𝑎𝑎!$%#𝑥𝑥!$%# +⋯+
𝑎𝑎", has no real root. 

Solution. The answer is 𝐼𝐼 = 71,1 + #
$
8. Assume that the desired 

interval is of the form of (𝑏𝑏, 𝑐𝑐). For some 𝑞𝑞, 𝑟𝑟 in (𝑏𝑏, 𝑐𝑐), put 𝑎𝑎7 = 𝑞𝑞 for 
odd 𝑖𝑖 and 𝑎𝑎7 = 𝑟𝑟 for even 𝑖𝑖, where 0 ≤ 𝑖𝑖 ≤ 2𝑑𝑑 − 1. Then  

𝑃𝑃(−1) = 1 − 𝑑𝑑𝑞𝑞 + 𝑑𝑑𝑟𝑟. 

Since 𝑃𝑃(𝑥𝑥) has no real root, we must have 𝑃𝑃(−1) > 0. Thus, 𝑞𝑞 − 𝑟𝑟 <
#
$
. We can assume that 𝑐𝑐 − 𝑏𝑏 ≤ #

$
. Therefore, consider the interval as 

7𝑏𝑏, 𝑏𝑏 + #
$
8.  It is easy to find that 𝑏𝑏 > 0, since by choosing 𝑎𝑎" = 𝑏𝑏 +

𝜀𝜀, for some sufficiently small 𝜀𝜀 > 0, we find that 𝑃𝑃(0) = 𝑎𝑎" = 𝑏𝑏 + 𝜀𝜀 
should be positive.  

Now, assign the following numbers to the coefficients of the 
polynomial. 

                             𝑎𝑎!$%# = 𝑎𝑎!$%) = ⋯ = 𝑎𝑎# = 𝑏𝑏 +
#
$
+ 𝜀𝜀, 

	𝑎𝑎!$ = 𝑎𝑎!$%! = ⋯ = 𝑎𝑎" = 𝑏𝑏 + 𝜀𝜀    

for some sufficiently small 𝜀𝜀 > 0. 

It is clear that for all positive real 𝑥𝑥, 𝑃𝑃(𝑥𝑥) > 0 Now for all negative 
real 𝑥𝑥, putting 𝑥𝑥 = −𝑡𝑡, where 𝑡𝑡 > 0, then 
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        𝑃𝑃(−𝑡𝑡) = 𝑡𝑡!$ − 7𝑏𝑏 + #
$
8 𝑡𝑡!$%# + 𝑏𝑏𝑡𝑡!$%! − 7𝑏𝑏 + #

$
8 𝑡𝑡!$%) +

⋯− 7𝑏𝑏 + #
$
8 𝑡𝑡 + 𝑏𝑏 + 𝜀𝜀𝜀𝜀(𝑡𝑡),  

for some polynomial 𝜀𝜀(𝑡𝑡), deg𝜀𝜀(𝑡𝑡) = 2𝑑𝑑 − 1. As 𝜀𝜀 tends to zero, it 
remains to find all 𝑏𝑏 > 0  such that 

         𝑅𝑅(𝑡𝑡) = 𝑡𝑡!$ − 7𝑏𝑏 + #
$
8 𝑡𝑡!$%# + 𝑏𝑏𝑡𝑡!$%! − 7𝑏𝑏 + #

$
8 𝑡𝑡!$%) +

⋯− 7𝑏𝑏 + #
$
8 𝑡𝑡 + 𝑏𝑏 ≥ 0. 

Note that 𝑅𝑅(1) = 0. Therefore, 𝑅𝑅@(1) should be zero. That is,  

2𝑑𝑑 − (2𝑑𝑑 − 1)c𝑏𝑏 +
1
𝑑𝑑d
+ (2𝑑𝑑 − 2)𝑏𝑏 −⋯− c𝑏𝑏 +

1
𝑑𝑑d
= 0. 

Hence, 𝑑𝑑(1 − 𝑏𝑏) = 0. That is, 𝑑𝑑 = 1. 

Now, we claim the interval 𝐼𝐼 = 71,1 + #
$
8 works! It is obvious that 

𝑃𝑃(𝑥𝑥) has no positive real roots. Now, we prove that 𝑃𝑃(𝑥𝑥) > 0 for all 
negative real 𝑥𝑥. Put 𝑥𝑥 = −𝑡𝑡, 𝑡𝑡 > 0. Then  

𝑃𝑃(−𝑡𝑡) > 𝑡𝑡!$ − c1 +
1
𝑑𝑑d
𝑡𝑡!$%# + 𝑡𝑡!$%! − c1 +

1
𝑑𝑑d
𝑡𝑡!$%) +⋯

− c1 +
1
𝑑𝑑d
𝑡𝑡 + 1.	

Thus, it remains to prove that 

𝑡𝑡!$ + 𝑡𝑡!$%! +⋯+ 𝑡𝑡! + 1
𝑑𝑑 + 1

≥
𝑡𝑡!$%# + 𝑡𝑡!$%) +⋯+ 𝑡𝑡) + 𝑡𝑡

𝑑𝑑
. 

Now, because 𝑡𝑡!$ + 1 ≥ 𝑡𝑡!$%!.'# + 𝑡𝑡!.%#, 𝑡𝑡!. + 𝑡𝑡!.%! ≥ 2𝑡𝑡!.%#, 
we are done. 
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No students got complete points for this problem. We had six students 
who got 6/15 for this problem. They proved that the length of the 

interval is at most #
$
 and proved the interval 𝐼𝐼 = 71,1 + #

$
8 satisfies  

the problem conditions. But, they could not prove that it is the only 
solution. As the author of this problem, I expected more complete 
solutions from 80 contestants. 

In the following remark, I provide an alternative approach to finding 
the optimal case. It needs some knowledge about limits along with 
knowledge about the roots. In effect, this approach seems more 
complicated for high school students. I provide this approach here to 
show that despite their complexity, sometimes advanced techniques 
can nevertheless be reconciled with elementary techniques. 

Remark. There is an alternative proof for the segment where we 
proved 𝑏𝑏 = 1. One can find that 

𝑡𝑡!$ − 𝑏𝑏Z𝑡𝑡!$%# − 𝑡𝑡!$%! +⋯+ 𝑡𝑡 − 1[ −
1
𝑑𝑑
(𝑡𝑡!$%# + 𝑡𝑡!$%) +⋯+ 𝑡𝑡)

≥ 0. 

Hence for all 𝑡𝑡 > 1,  𝑏𝑏 ≤ #
$
. $+

!+%(+!+,#'+!+,-'⋯'+)
+!+,#%+!+,!'⋯'+%#

.  

And, for all 𝑡𝑡 < 1, 𝑏𝑏 ≥ #
$
$+!+%(+!+,#'+!+,-'⋯'+)

+!+,#%+!+,!'⋯'+%#
.  

Thus, 

𝑏𝑏 ≤
1
𝑑𝑑
. lim
+→#.

𝑑𝑑𝑡𝑡!$ − Z𝑡𝑡!$%# + 𝑡𝑡!$%) +⋯+ 𝑡𝑡[
𝑡𝑡!$%# − 𝑡𝑡!$%! +⋯+ 𝑡𝑡 − 1

, 

And  
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𝑏𝑏 ≥
1
𝑑𝑑
	 lim
+→#,

𝑑𝑑𝑡𝑡!$ − Z𝑡𝑡!$%# + 𝑡𝑡!$%) +⋯+ 𝑡𝑡[
𝑡𝑡!$%# − 𝑡𝑡!$%! +⋯+ 𝑡𝑡 − 1

, 

since the function $+
!+%B+!+,#'+!+,-'⋯'+C
+!+,#%+!+,!'⋯'+%#

 has a limit as 𝑡𝑡 approaches  

Thus, we find that 

lim
+→#,

𝑑𝑑𝑡𝑡!$ − (𝑡𝑡!$%# + 𝑡𝑡!$%) +⋯+ 𝑡𝑡)
𝑡𝑡!$%# − 𝑡𝑡!$%! +⋯+ 𝑡𝑡 − 1

= lim
+→#.

𝑑𝑑𝑡𝑡!$ − (𝑡𝑡!$%# + 𝑡𝑡!$%) +⋯+ 𝑡𝑡)
𝑡𝑡!$%# − 𝑡𝑡!$%! +⋯+ 𝑡𝑡 − 1

. 

Hence, 𝑏𝑏 = #
$
. lim
+→#

$+!+%(+!+,#'+!+,-'⋯'+)
+!+,#%+!+,!'⋯'+%#

. Finally, note that  

𝑑𝑑𝑡𝑡!$ − (𝑡𝑡!$%# + 𝑡𝑡!$%) +⋯+ 𝑡𝑡)
𝑡𝑡!$%# − 𝑡𝑡!$%! +⋯+ 𝑡𝑡 − 1

=
Z𝑡𝑡!$ − 𝑡𝑡!$%#[ + Z𝑡𝑡!$ − 𝑡𝑡!$%)[ + ⋯+ Z𝑡𝑡!$ − 𝑡𝑡[

(𝑡𝑡 − 1)(𝑡𝑡!$%! + 𝑡𝑡!$%: +⋯+ 1)

=
(𝑡𝑡 − 1)(𝑡𝑡!$%# + 𝑡𝑡!$%)(𝑡𝑡! + 𝑡𝑡 + 1) +⋯+ 𝑡𝑡Z𝑡𝑡!$%! +⋯+ 1[)

(𝑡𝑡 − 1)(𝑡𝑡!$%! + 𝑡𝑡!$%: +⋯+ 1)
. 

Thus 

lim
+→#

𝑑𝑑𝑡𝑡!$ − Z𝑡𝑡!$%# + 𝑡𝑡!$%) +⋯+ 𝑡𝑡[
𝑡𝑡!$%# − 𝑡𝑡!$%! +⋯+ 𝑡𝑡 − 1

= lim
+→#

𝑡𝑡!$%# + 𝑡𝑡!$%)(𝑡𝑡! + 𝑡𝑡 + 1) +⋯+ 𝑡𝑡Z𝑡𝑡!$%! +⋯+ 1[
𝑡𝑡!$%! + 𝑡𝑡!$%: +⋯+ 1

 

= $!

$
= 1.  

That is, 𝑏𝑏 = #
$
. 𝑑𝑑 = 1.  
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4. Absolute Value, Triangle Inequality, and Complex 
Numbers 

The third topic that I use when I have a lecture on polynomials, is the 
triangle inequality. Most of the students know it very well. However, 
they cannot adapt it in their arguments and proof procedures. 
Furthermore, proofs that proceed based on the triangle inequality need 
some special attention to the case(s) of equality as well. 

This problem was proposed by the author. Five students from the 
thirteen gold medalists solved it. The interesting issue was that all of 
these five students became members of our national team for the IMO 
2019. It would seem that solving this problem brings fruition!  

Problem 5. (Iranian TST, 2019, Exam 3, Problem 1) Let 1 < 𝑡𝑡 < 2 
be a real number. Prove that for all sufficiently large positive integers 
𝑑𝑑, there is a monic polynomial 𝑃𝑃(𝑥𝑥) of degree 𝑑𝑑, such that all of its 
coefficients are either 1 or −1 and: 

|𝑃𝑃(𝑡𝑡) − 2019| ≤ 1. 

Solution. First we shall prove the following lemma. 

Lemma 1. Let 𝑏𝑏,, be a sequence of positive real numbers satisfying 
𝑏𝑏, ≤ 2𝑏𝑏" + 𝑏𝑏# +⋯+ 𝑏𝑏,%#. Then for each real number 𝑧𝑧, |𝑧𝑧| ≤
2𝑏𝑏" + 𝑏𝑏# +⋯+ 𝑏𝑏,, there exist 𝑎𝑎", … , 𝑎𝑎, ∈ {1,−1} such that: 

i𝑧𝑧 −S 𝑎𝑎7𝑏𝑏7
,

78"
i ≤ 𝑏𝑏". 

Proof. Write the inequality |𝑧𝑧| ≤ 2𝑏𝑏" + 𝑏𝑏# +⋯+ 𝑏𝑏,%#in the form  
|𝑧𝑧 − Sgn(𝑧𝑧)𝑏𝑏,| ≤ 2𝑏𝑏" + 𝑏𝑏# +⋯+ 𝑏𝑏,%#. Then proceed to the proof 
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by induction on 𝑛𝑛.  For sake of convenience, we also define Sgn(0) =
1. This completes our proof.  

Back to our problem. Let us define 𝑏𝑏7 = 𝑡𝑡7. Then it is easy to deduce 
that  

                𝑏𝑏, − 𝑏𝑏" = 𝑡𝑡, − 1 ≤ 1 + 𝑡𝑡 +⋯+ 𝑡𝑡,%# 

= +"%#
+%#

= 𝑏𝑏" + 𝑏𝑏# +⋯+ 𝑏𝑏,%#.  

Moreover, choose 𝑑𝑑 such that 𝑡𝑡$ ≥ 2019. Then 

2019 ≤ 𝑡𝑡$ ≤ 2 + 𝑡𝑡 +⋯+ 𝑡𝑡$ . 

Hence, by our lemma, there exist 𝑎𝑎", … , 𝑎𝑎$ ∈ {1,−1} such that 

jS 𝑎𝑎7
$

78"
𝑡𝑡7 − 2019j ≤ 1. 

We are done.  

In the next problem, we need a tricky identity. During July 2017, the 
problems selection committee told me that they needed a complex 
number problem. I proposed this problem. Unfortunately, students 
were not good enough at polynomials with complex coefficients. We 
had only three complete scores. I designed the first part of the problem 
in a way that solving it works as a hint for the second part. That is, the 
student could realize some facts from the relation between the roots of 
a polynomial and its reciprocal polynomial (i. e., polynomials P(x), 

	𝑥𝑥$𝑃𝑃 7#
*
8, and 𝑑𝑑 = deg𝑃𝑃(𝑥𝑥)). Inquisitive readers can find some 

interesting lines of thought about roots of unity and reciprocal 
polynomials, etc. in Safaei (2019). 
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Problem 6. (3rd round Iranian Mathematical Olympiad, 2017, Final 
Algebra exam, Problem 2) Let 𝑃𝑃(𝑧𝑧) = 𝑎𝑎" + 𝑎𝑎#𝑧𝑧 +⋯+ 𝑎𝑎$𝑧𝑧$ be a 
polynomial with complex coefficients, we define its “reverse” as: 

𝑃𝑃∗(𝑧𝑧) = 𝑎𝑎"kkk𝑧𝑧$ + 𝑎𝑎#kkk𝑧𝑧$%# +⋯+ 𝑎𝑎$kkk. 

i. Prove that:	𝑃𝑃∗(𝑧𝑧) = 𝑧𝑧$𝑃𝑃 7#
E̅
8kkkkkkk. 

ii. Let all roots of the polynomial 𝑞𝑞$%;(𝑧𝑧) of degree 𝑑𝑑 − 𝑙𝑙	lie 
inside or on the unit circle(𝑙𝑙 > 0, 𝑙𝑙 ∈ ℤ). 

Prove that all the roots of the following polynomial lie on the unit circle: 

𝑄𝑄(𝑧𝑧) = 𝑧𝑧;𝑞𝑞$%;(𝑧𝑧) + 𝑞𝑞$%;
∗(𝑧𝑧). 

Solution-i. Assume 𝑞𝑞$%;(𝑧𝑧) = (𝑧𝑧 − 𝑧𝑧#)⋯ (𝑧𝑧 − 𝑧𝑧$%;) and |𝑧𝑧7| ≤ 1 

for all 𝑖𝑖 = 1,… , 𝑑𝑑 − 𝑙𝑙.  Then we can find that 𝑃𝑃∗(𝑧𝑧) = 𝑧𝑧$𝑃𝑃 7#
E̅
8kkkkkkk. 

Solution-ii.  If 𝑠𝑠 is a root of 𝑃𝑃(𝑧𝑧) then, #
<̅
 must be a root of 𝑃𝑃∗(𝑧𝑧), 

which leads to:  

𝑞𝑞$%;
∗(𝑧𝑧) = (1 − 𝑧𝑧𝑧𝑧#o )⋯ (1 − 𝑧𝑧𝑧𝑧$%;kkkkkk). 

 Assume 𝑄𝑄(𝑟𝑟) = 0 for some complex number 𝑟𝑟. Then 

𝑟𝑟;𝑞𝑞$%;(𝑟𝑟) + 𝑞𝑞$%;
∗(𝑟𝑟) = 0. 

Thus, 𝑟𝑟;𝑞𝑞$%;(𝑟𝑟) = −𝑞𝑞$%;
∗(𝑟𝑟) and then 

p𝑟𝑟;𝑞𝑞$%;(𝑟𝑟)p = |𝑞𝑞$%;
∗(𝑟𝑟)|. 

Hence p𝑟𝑟;p ∙ |𝑞𝑞$%;(𝑟𝑟)| = |𝑞𝑞$%;
∗(𝑟𝑟)| or 

p𝑟𝑟;p ∙ |(𝑟𝑟 − 𝑧𝑧#)⋯ (𝑟𝑟 − 𝑧𝑧$%;)| = |(1 − 𝑟𝑟𝑧𝑧#o )⋯(1 − 𝑟𝑟𝑧𝑧$%;kkkkkk)|. 
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If |𝑧𝑧7| = 1 for some 𝑖𝑖 then |𝑟𝑟 − 𝑧𝑧7| = |𝑧𝑧Go|. |𝑟𝑟 − 𝑧𝑧7| = |𝑟𝑟𝑧𝑧Go − 1| =
|1 − 𝑟𝑟𝑧𝑧Go|. Thereby without loss of generality, we can assume |𝑧𝑧7| < 1 
for all 𝑖𝑖.  Now we prove the following lemma. 

Lemma 2. The following identity holds for all complex numbers 𝑟𝑟, 𝑧𝑧7 , 
 |𝑟𝑟 − 𝑧𝑧7|! − |1 − 𝑟𝑟𝑧𝑧Go|! = (|𝑟𝑟|! − 1)(1 − |𝑧𝑧7|!). 

Proof. 

|𝑟𝑟 − 𝑧𝑧7|! − |1 − 𝑟𝑟𝑧𝑧Go|! = (𝑟𝑟 − 𝑧𝑧7)(�̅�𝑟 − 𝑧𝑧Go) − (1 − 𝑟𝑟𝑧𝑧Go)(1 − �̅�𝑟𝑧𝑧7) = 

   |𝑟𝑟|! + |𝑧𝑧7|! − 1 − |𝑟𝑟|!. |𝑧𝑧7|! = (|𝑟𝑟|! − 1)(1 − |𝑧𝑧7|!). 

This completes our proof.  

We conclude that whenever  |𝑧𝑧7| < 1 the following corollary holds.   

Corollary. If |𝑟𝑟| > 1 then |𝑟𝑟 − 𝑧𝑧7| > |1 − 𝑟𝑟𝑧𝑧Go|, and if |𝑟𝑟| < 1 then 
|𝑟𝑟 − 𝑧𝑧7| < |1 − 𝑟𝑟𝑧𝑧Go|. 

Now, if  |𝑟𝑟| > 1 then 

p𝑟𝑟;p ∙ |(𝑟𝑟 − 𝑧𝑧#)⋯ (𝑟𝑟 − 𝑧𝑧$%;)| > p𝑟𝑟;p ∙ |(1 − 𝑟𝑟𝑧𝑧#o )⋯ (1 − 𝑟𝑟𝑧𝑧$%;kkkkkk)| 

    > |(1 − 𝑟𝑟𝑧𝑧#o )⋯(1 − 𝑟𝑟𝑧𝑧$%;kkkkkk)|,  

which leads to a contradiction. 

Moreover, if |𝑟𝑟| < 1 then 

p𝑟𝑟;p ∙ |(𝑟𝑟 − 𝑧𝑧#)⋯(𝑟𝑟 − 𝑧𝑧$%;)| < p𝑟𝑟;p ∙ |(1 − 𝑟𝑟𝑧𝑧#o )⋯(1 − 𝑟𝑟𝑧𝑧$%;kkkkkk)| 

    < |(1 − 𝑟𝑟𝑧𝑧#o )⋯(1 − 𝑟𝑟𝑧𝑧$%;kkkkkk)|, 

  which again leads to a contradiction. Thus |𝑟𝑟| = 1, and we are done! 
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Remark. Sometimes using an identity, taking the norm on both sides, 
and comparing the order of magnitudes of both sides can help 
fruitfully to finish problems concerning complex numbers. 

5. Lagrange’s Interpolation Formula (LIF) 

The fourth topic that I prefer to teach is Lagrange’s interpolation 
Formula (LIF). By adopting this formula, it becomes possible to 
determine or characterize the polynomial 𝑃𝑃(𝑥𝑥) by 1 + deg𝑃𝑃(𝑥𝑥) 
distinct points. Most students know this formula, they even write this 
formula in their papers, and they effortlessly finish their idea. They 
are partly right! This is because most of the problems concerning the 
LIF need another complementary innovative idea. Readers can find 
very interesting ideas about the LIF in books like Andreescu and 
Dospinescu (2010, 2012).  

The first problem has a solution that only needs insight from rational 
and irrational numbers and examining some coefficients. The 
problems selection committee had not found it. Their solution was 
based on the LIF. The first solution is from one of the exam papers 
and the second solution is based on discussions during the month of 
July 2016. Fourteen out of 74 students solved this problem. Thus, it 
seems that this problem was hard and was not a good candidate for 
being the first one on the exam.  

Problem 7. (3rd round Iranian Mathematical Olympiad, 2017, Final 
Algebra exam, Problem 1) Let 𝑃𝑃(𝑥𝑥) be a polynomial with integer 
coefficients of degree 2016 and with no rational roots. Prove that 
there exists a polynomial 𝑄𝑄(𝑥𝑥) with integer coefficients of degree 
1395 such that for all distinct roots 𝑟𝑟, 𝑠𝑠 of 𝑃𝑃(𝑥𝑥), 𝑄𝑄(𝑟𝑟) − 𝑄𝑄(𝑠𝑠) is an 
irrational number.  



Mathematics Competitions. Vol 33 No. 1. 2020

53

Solution. First, we will prove the following lemma. 

Lemma 3. Assume 𝑟𝑟, 𝑠𝑠 are irrational numbers. Then, at least one of 
𝑟𝑟 − 𝑠𝑠, 𝑟𝑟! − 𝑠𝑠! is irrational. 

Proof. Assume the contrary. We find that 𝑟𝑟 + 𝑠𝑠 = H!%<!

H%<
 is rational. 

Therefore 2𝑟𝑟 = 𝑟𝑟 + 𝑠𝑠 + 𝑟𝑟 − 𝑠𝑠 is rational. Contradiction. Our proof is 
complete. 

Back to our problem, let 𝑄𝑄(𝑥𝑥) = 𝑥𝑥#)I& + 𝑥𝑥#)I: +⋯+ 𝑎𝑎𝑥𝑥! + 𝑏𝑏𝑥𝑥. We 
will specify 𝑎𝑎, 𝑏𝑏 in such a way that for all distinct roots 𝑟𝑟, 𝑠𝑠 of 𝑃𝑃(𝑥𝑥), 
𝑄𝑄(𝑟𝑟) − 𝑄𝑄(𝑠𝑠) is an irrational number. First of all, we fix 𝑎𝑎 and increase 
the value of 𝑏𝑏. Now, we prove the following lemma. 

Lemma 4. If for a fixed 𝑎𝑎 and some (𝑟𝑟, 𝑠𝑠) the value of 𝑟𝑟 − 𝑠𝑠 is 
irrational, then there is at most one 𝑏𝑏 such that 𝑄𝑄(𝑟𝑟) − 𝑄𝑄(𝑠𝑠) is rational.  

Proof. If for 𝑏𝑏, 𝑐𝑐 the values 𝑄𝑄J(𝑟𝑟) − 𝑄𝑄J(𝑠𝑠), 𝑄𝑄K(𝑟𝑟) − 𝑄𝑄K(𝑠𝑠) are 
rational, then we subtract them to find (𝑏𝑏 − 𝑐𝑐)(𝑟𝑟 − 𝑠𝑠) is rational. 
Absurd.  This completes our proof. 

Hence, for all large enough 𝑏𝑏 and for all (𝑟𝑟, 𝑠𝑠) such that 𝑟𝑟 − 𝑠𝑠 ∉ ℚ,	 
𝑄𝑄J(𝑟𝑟) − 𝑄𝑄J(𝑠𝑠) is irrational. Analogously, if 𝑟𝑟! − 𝑠𝑠! is irrational, for 
all large enough 𝑎𝑎 and for all (𝑟𝑟, 𝑠𝑠) such that 𝑟𝑟! − 𝑠𝑠! ∉ ℚ, 𝑄𝑄-(𝑟𝑟) −
𝑄𝑄-(𝑠𝑠) is irrational.  Now, choose 𝑎𝑎, 𝑏𝑏 large enough and we are done. 

Second solution. In this solution, we need Lemma 1 above and 
another lemma, provided as follows.  

Lemma 5. If a polynomial 𝑃𝑃(𝑥𝑥) of degree 𝑑𝑑 assumes rational values 
in at least 𝑑𝑑 + 1 rational points, the 𝑃𝑃(𝑥𝑥) has rational coefficients. 
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Proof. Assume that 𝑃𝑃(𝑟𝑟"), … , 𝑃𝑃(𝑟𝑟$) are rational for the subset 
{𝑟𝑟", … , 𝑟𝑟$} of rational numbers. Then, by Lagrange’s Interpolation 
Formula (LIF), we find that 

𝑃𝑃(𝑥𝑥) =S𝑃𝑃(𝑟𝑟7)
(𝑥𝑥 − 𝑟𝑟")… (𝑥𝑥 − 𝑟𝑟7%#)(𝑥𝑥 − 𝑟𝑟7'#)⋯ (𝑥𝑥 − 𝑟𝑟$)
(𝑟𝑟7 − 𝑟𝑟")… (𝑟𝑟7 − 𝑟𝑟7%#)(𝑟𝑟7 − 𝑟𝑟7'#)⋯ (𝑟𝑟7 − 𝑟𝑟$)

$

78"

. 

Considering the above formula, it is clear that 𝑃𝑃(𝑥𝑥) has rational 
coefficients. This completes our proof.  

Back to our problem. Consider the polynomial 𝑄𝑄-(𝑥𝑥) = (𝑥𝑥 + 𝑎𝑎)#)I&, 
for some 𝑎𝑎 that will be determined later. Assume that 𝑄𝑄-(𝑥𝑥) does not 
work. Then for each 𝑎𝑎 there is a pair (𝑟𝑟, 𝑠𝑠) from the roots of 𝑃𝑃(𝑥𝑥) such 
that 𝑄𝑄-(𝑟𝑟) − 𝑄𝑄-(𝑠𝑠) = (𝑟𝑟 + 𝑎𝑎)#)I& − (𝑠𝑠 + 𝑎𝑎)#)I& is an integer. Since 
we have only finitely many pairs of (𝑟𝑟, 𝑠𝑠), then there is a pair (𝑟𝑟, 𝑠𝑠) 
such that 𝑆𝑆(𝑎𝑎) = (𝑟𝑟 + 𝑎𝑎)#)I& − (𝑠𝑠 + 𝑎𝑎)#)I& is rational for all but 
finitely many 𝑎𝑎. By Lemma 4, 𝑆𝑆(𝑎𝑎) should have rational coefficients. 
On the other hand, the coefficients of 𝑎𝑎#)I:, 𝑎𝑎#)I)	are 𝑟𝑟 − 𝑠𝑠, 𝑟𝑟! −
𝑠𝑠!, whilst by Lemma 3 both of them cannot be rational. We are done.  

The next problem was proposed by me. I wanted to emphasize the fact 
that the solutions of the inequality |𝑃𝑃(𝑥𝑥)| < 𝐶𝐶 for some polynomial 
𝑃𝑃(𝑥𝑥) and some real number 𝐶𝐶 are a subset of an interval of the form 
(−𝑎𝑎, 𝑎𝑎). At the very first glance, no one thought about the LIF. 
However, later, one important property of the LIF seemed helpful. 
That is, examining the leading coefficients on both sides of the 
following identity 

𝑃𝑃(𝑥𝑥) =S𝑃𝑃(𝑟𝑟7)
(𝑥𝑥 − 𝑟𝑟")… (𝑥𝑥 − 𝑟𝑟7%#)(𝑥𝑥 − 𝑟𝑟7'#)⋯ (𝑥𝑥 − 𝑟𝑟$)
(𝑟𝑟7 − 𝑟𝑟")… (𝑟𝑟7 − 𝑟𝑟7%#)(𝑟𝑟7 − 𝑟𝑟7'#)⋯ (𝑟𝑟7 − 𝑟𝑟$)

$

78"
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shows that the leading coefficient of 𝑃𝑃(𝑥𝑥) is equal to 

∑ L(H$)
(H$%H/)⋯(H$%H$,#)(H$%H$.#)⋯(H$%H+)

$
78" . So, one can think about  

establishing a bound for the denominator. This problem was solved by 
six students out of  72 contestants and all the six students won a gold 
medal.  

Problem 8. (3rd round Iranian Mathematical Olympiad, 2018, Final 
Algebra exam, Problem 4) Let 𝑃𝑃(𝑥𝑥) be a non-constant polynomial 
with real coefficients. For all positive real numbers 𝑀𝑀, prove that there 
is a positive integer 𝑚𝑚 such that for any monic polynomial 𝑄𝑄(𝑥𝑥) of 
degree greater than or equal to 𝑚𝑚, the total number of integer solutions 
of the inequality   

|𝑃𝑃(𝑄𝑄(𝑥𝑥))| ≤ 𝑀𝑀 

does not exceed deg𝑄𝑄(𝑥𝑥). 

Solution. It is clear that the solutions of the inequality, |𝑃𝑃(𝑥𝑥)| ≤ 𝑀𝑀 
are a subset of an interval of the form (−𝑎𝑎, 𝑎𝑎) for some positive real 
number 𝑎𝑎. Now, assume deg𝑄𝑄(𝑥𝑥) = 𝑑𝑑 ≥ 𝑚𝑚. Consider integers 𝑥𝑥" <
⋯ < 𝑥𝑥$. Then by Lagrange's interpolation formula, one can find that 

                             𝑄𝑄(𝑥𝑥) = ∑ 𝑄𝑄(𝑥𝑥7)$
78" ∏ *%*0

*$%*07MN .  

Since 𝑄𝑄(𝑥𝑥) is monic, we find that 

                             1 = ∑ 𝑄𝑄(𝑥𝑥7)$
78" ∏ #

*$%*07MN .  
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The right-hand side is less than or equal to 

max
7
|𝑄𝑄(𝑥𝑥7)|S

1
𝑖𝑖! (𝑑𝑑 − 𝑖𝑖)!

7

<
2$

𝑑𝑑!
.max

7
|𝑄𝑄(𝑥𝑥7)|. 

Hence,  

max
7
|𝑄𝑄(𝑥𝑥7)| >

𝑑𝑑!
2$
≥
𝑚𝑚!
2O
. 

Now, choose 𝑚𝑚 such that 7− O!
!1
, O!
!1
8 ⊆ (−𝑎𝑎, 𝑎𝑎). We deduce that, 

from any 𝑑𝑑 + 1 integers, at least one of them satisfies the inequality 
|𝑄𝑄(𝑥𝑥)| > O!

!1
. But, all the integer solutions of the inequality 

|𝑃𝑃(𝑄𝑄(𝑥𝑥))| ≤ 𝑀𝑀 must satisfy the inequality |𝑄𝑄(𝑥𝑥)| ≤ O!
!1
. We are done. 

 

6. Multi-Variable Polynomials (MVPs) 

The last topic I have selected to discuss is Multi-Variable Polynomials 
(MVPs). Whenever I teach this topic, I start with the similarities 
between MVPs and Single-Variable Polynomials (SVPs). That is, I 
have found that this strategy is more consistent in light of the current 
knowledge of the trainees and so I explicitly define MVPs and extend 
upon the analogies. Then, after one or two sessions I start to discuss 
disanalogies between the MVPs and SVPs. Proceeding this way, 
students develop a better attitude toward and a better understanding of 
the MVPs. 

Based on the above strategy, I concentrate more on the notion of 
homogeneous polynomials and representing a MVP as the sum of its 
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homogeneous parts of different degrees. This was my motivation to 
write an article about homogeneity (Safaei, 2018). 

This problem needs a very basic idea of the growth rate of MVPs. That 
is, in the SVPs, if 𝑃𝑃(𝑥𝑥) = 𝑎𝑎" + 𝑎𝑎#𝑥𝑥 +⋯+ 𝑎𝑎$𝑥𝑥$ , then for each 𝜀𝜀 >
0, (𝑎𝑎$ − 𝜀𝜀)𝑥𝑥$ < 𝑃𝑃(𝑥𝑥) < (𝑎𝑎$ + 𝜀𝜀)𝑥𝑥$ for all but finitely many real 𝑥𝑥. 
In this problem, I outline the same idea for the MVPs. Sixteen out of 
76 students completely solved this problem.  

Problem 9. (3rd round Iranian Mathematical Olympiad, 2017, Algebra 
exam, Midterm, Problem 3) Do there exist infinitely many points 
(𝑥𝑥#, 𝑦𝑦#), (𝑥𝑥!, 𝑦𝑦!), …	 in the Cartesian plane such that for any sequence 
𝑏𝑏#, 𝑏𝑏!, … of real numbers there exists a polynomial 𝑃𝑃(𝑥𝑥, 𝑦𝑦) with real 
coefficients such that for each 𝑖𝑖, 𝑃𝑃(𝑥𝑥7 , 𝑦𝑦7) = 𝑏𝑏7? 

Solution. Consider 𝑃𝑃(𝑥𝑥, 𝑦𝑦) = ∑ 𝑃𝑃$(𝑥𝑥, 𝑦𝑦)$
78" , where 𝑃𝑃.(𝑥𝑥, 𝑦𝑦) are 

homogeneous polynomials of degree 𝑘𝑘. Then, for all sufficiently large 
values of |𝑥𝑥|, |𝑦𝑦|, 𝑃𝑃(𝑥𝑥, 𝑦𝑦) < 𝐶𝐶(|𝑥𝑥| + |𝑦𝑦| + 1)$ for some constant 𝐶𝐶. 
Now, consider the sequence 𝑏𝑏7 = 𝑖𝑖(|𝑥𝑥7| + |𝑦𝑦7| + 1)$ . Then, for all 
large enough 𝑖𝑖, the equation 𝑃𝑃(𝑥𝑥7 , 𝑦𝑦7) = 𝑏𝑏7 = 𝑖𝑖(|𝑥𝑥7| + |𝑦𝑦7| + 1)7 has 
only finitely many solutions.  

Remark. One can also consider the sequence 𝑏𝑏7 = (|𝑥𝑥7| + |𝑦𝑦7| + 1)7!. 

Remark. At the outset, this problem looks like “Lagrange 
Interpolation Formula (LIF)” for multi-variable polynomials. That is, 

assume deg𝑃𝑃(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑. Then, the polynomial 𝑃𝑃(𝑥𝑥, 𝑦𝑦) has $($'#)
!

 

unknown coefficients. Assume we have two sets 
{𝑥𝑥", … , 𝑥𝑥$}, {𝑦𝑦", … , 𝑦𝑦$}. Then, if we know the value of 𝑃𝑃Z𝑥𝑥7 , 𝑦𝑦N[ for  
all 0 ≤ 𝑖𝑖, 𝑗𝑗, 𝑖𝑖 + 𝑗𝑗 ≤ 𝑑𝑑,  then, the polynomial 𝑃𝑃(𝑥𝑥, 𝑦𝑦) could uniquely be 
determined as follows: 
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𝑃𝑃(𝑥𝑥, 𝑦𝑦) = . 𝑃𝑃/𝑥𝑥2 , 𝑦𝑦30
	562,3,2&36(,

(𝑥𝑥 − 𝑥𝑥5)⋯(𝑥𝑥 − 𝑥𝑥2*')
(𝑥𝑥2 − 𝑥𝑥5)⋯(𝑥𝑥2 − 𝑥𝑥2*')

.
(𝑦𝑦 − 𝑦𝑦5)⋯(𝑦𝑦 − 𝑦𝑦3*')
/𝑦𝑦3 − 𝑦𝑦50⋯(𝑦𝑦3 − 𝑦𝑦3*')

. 

However, although it would be a great achievement to determine a 
multivariable polynomial through this, we cannot find a good idea to 
finish the above-mentioned problem. 

 

7. Concluding Remarks 

In this article, I outlined a framework concerning the important 
teaching elements of polynomials. For this reason, I used some 
problems from recent Iranian Mathematical Olympiads. As has been 
seen, these problems are challenging but interesting. Proceeding in 
this way, readers can find different approaches implemented to solve 
those problems, some notes and remarks about the number of 
complete solutions, and some notes to expose the weakness of other 
potential arguments. In addition, I introduced some resources for 
further reading. 

Teaching polynomials needs a priori knowledge from multiple 
sources. In some degree, it is akin to teaching Combinatorics or 
advanced Number Theory. Furthermore, and quite generally, it also 
has some degree of idiosyncrasy since, as has been previously shown, 
it needs insight from calculation and algebraic expressions. Rather 
than being a problem, it is in fact, a great advantage for those who 
want to solve challenging problems in Algebra.  
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Abstract

In this article we present an elegant proof for bounds on 
the product of three positive real numbers in terms of their 
sum and the sum of pairwise products. This result, the pqr-
Inequality, may become a classic method on mathematical 
inequalities after acceptance by the mathematical 
community. Also, we show the solutions to ten problems 
from Mathematical Olympiads from around the world and 
from journals. All of them are original and suitable for 
applications of the pqr Inequality, with the idea of unifying 
many inequalities through this powerful and novel method.

Dedicated to Jorge Erick López Velázquez
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1 Introduction

There are several versions of the pqr Inequality in the literature,
this one deals with symmetric polynomial inequalities in three
variables, providing optimal bounds for the product abc. In the
standard form, non-negative numbers are considered, resulting
in the possibility that two of a, b, c are equal or one of them is
0. This approach was studied by Vasile Ĉırtoaje in [3], and by
Steven Chow, Howard Halim and Victor Rong in [2], as the re-
sult of a research project at the Tournament of Towns Summer
Conference 2016. This method was previously communicated in
the Art of Problem Solving (AoPS) as has been noticed in the
references of the above article. In this paper we consider pos-
itive numbers and sharp bounds for the product abc by means
of the zeroes of the first derivative of a cubic polynomial and
Rolle’s theorem. Tran Phuong wrote about both methods in the
book Diamonds in Mathematical Inequalities citing many alge-
braic identities and not always perfectly clear ideas because his
manuscript is a draft copy. Jorge Erick López Velázquez redis-
covered the pqr Inequality, working on inequalities for the jour-
nal Mathematical Reflections. I received his ideas in a private
communication, missing the proof of sharpness for abc. The
notation introduced by him allowed me to prove the minimal
and maximal bounds were the best ones as a consequence of the
s−term. His initial idea was that this theorem is very powerful in
solving any symmetric polynomial inequality in three variables.
I explained to him about the complexity of algebraic identities
of high degree and gave some examples where after expansion
there are non symmetric terms. Usually, dealing with algebraic
expressions of degree higher than 6, involves long and complex
algebraic transformations; this task could be fixed by means of
symbolic computer programs. Frequently, at the end, when us-
ing the pqr Method, polynomial factorizations are required.

2
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After the presentation of the main inequality, we show 10 well-
selected examples from Mathematical Olympiads from around
the world and from the journal Mathematical Reflections. Each
one involves new and different techniques in applying the pqr
Inequality.

Many of the inequalities in this article are homogeneous alge-
braic expressions, so we may assume conditions on the variables.
In our experience this theorem has proven to be useful when
a + b + c = k, where k is a real number, in practice k = 1 or
k = 3. The condition ab+bc+ca equal to a real constant should
be analyzed with more detail.

Other conditions, aside from the typical ones (before mentioned),
may arise or be assumed, these are transformed into polynomial
conditions on several variables, and curiously the inequality to
be proved becomes most simple. There are many examples from
the Iran Mathematical Olympiad including the following one:

Let a, b, c be non-negative real numbers, such that

1

a2 + 1
+

1

b2 + 1
+

1

c2 + 1
= 1.

Show that

ab+ bc+ ca ≤ 3

2
.

3
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2 pqr Inequality

Let a, b, c be non-negative real numbers, and

p =
a+ b+ c

3
,

q =
ab+ bc+ ca

3
,

r = abc,

s =
1

3

√
(a− b)2 + (b− c)2 + (c− a)2

2
=

√
p2 − q.

The following inequality holds

max
{
0, (p+ s)2(p− 2s)

}
≤ r ≤ (p− s)2(p+ 2s).

Proof.

The proof considers the cubic polynomial

P (t) = (t− a)(t− b)(t− c) = t3 − 3pt2 + 3(p2 − s2)t− r,

with three real roots, meaning that P (t1) ≥ 0 and P (t2) ≤ 0 if
t1 ≤ t2 are the roots of P ′(t). (Notice we used Rolle’s theorem.)
But

P ′(t) = 3(t− p+ s)(t− p− s),

therefore

(p− s)2(p+ 2s)− r ≥ 0,

(p+ s)2(p− 2s)− r ≤ 0.

4
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3 Useful identities

a2 + b2 + c2 = 9p2 − 6q, (1)

a3 + b3 + c3 = 27p3 − 27pq + 3r, (2)

a4 + b4 + c4 = 81p4 − 108p2q + 18q2 + 12pr, (3)

a5 + b5 + c5 = 243p5 − 405p3q + 135pq2 + 45p2r − 15qr,(4)

a2b2 + b2c2 + c2a2 = 9q2 − 6pr, (5)

(a+ b− c)(b+ c− a)(c+ a− b) = −27p3 + 36pq − 8r. (6)

4 Examples

4.1 Generalization of an IMO Problem

Generalization to Problem 1 from the Twenty-Fifth IMO, Prague,
Czechoslovakia, June 29 - July 10, 1984. Proposed by M. Stoll,
B. Haible, Germany.

Let a, b, c be positive real numbers such that a + b + c = 1.
Show that

ab+ bc+ ca− λabc ≤ 9− λ

27
, for 0 ≤ λ ≤ 9

4
. (7)

Solution:

We have p = 1
3 .

p− 2s < 0 ⇔ 0 < ab+ bc+ ca <
1

4
.

In this case by the pqr−Inequality, abc > 0. So

ab+ bc+ ca− λabc <
1

4
≤ 9− λ

27
.

5
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Now p− 2s ≥ 0 if and only if

1

4
≤ ab+ bc+ ca ≤ 1

3
.

So, by the pqr−Inequality we need to prove that

3q ≤ 9− λ

27
+ λ(p+ s)2(p− 2s),

equivalent to

3q ≤ 9− λ

27
+ λ

(
1

3
+

√
1

9
− q

)2

·

(
1

3
− 2

√
1

9
− q

)
.

After squaring and multiply by 27 we get,

81q ≤ 9− λ+ λ
(
−2 + 27q + (18q − 2)

√
1− 9q

)
,

which is equivalent to

λ
(
3(1− 9q) + 2(1− 9q)

√
1− 9q

)
≤ 9(1− 9q).

Setting x = 1 − 9q, we obtain 0 ≤ x ≤ 1
4 , it only remains to

prove that λx(3+2
√
x) ≤ 9x; this clearly holds since 0 ≤ λ ≤ 9

4 .
This completes the proof.

♣

Example 1. [1]

Problem 11 proposed by Mihai Piticari and Dan Popescu.

Let a, b, c be positive real numbers such that a + b + c = 1.
Show that

6(a3 + b3 + c3) + 1 ≥ 5(a2 + b2 + c2).

6
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Solution:

a2 + b2 + c2 = 1− 6q,

a3 + b3 + c3 = 1− 9q + 3r.

So, inequality to be proved becomes

3q − 9/4 · r ≤ 1

4
,

clearly true taking λ = 9
4 in inequality (7).

♣

Example 2.

The Sixth IMO. Moscow, Soviet Union, June 30 - July 10, 1964.
Problem 2, Hungary.

Denote by a, b, c lengths of the sides of a triangle. Prove that

a2(b+ c− a) + b2(c+ a− b) + c2(a+ b− c) ≤ 3abc.

Solution:

The inequality is homogeneous, so assume a+ b+ c = 1.

a2(1− 2a) + b2(1− 2b) + c2(1− 2c) ≤ 3abc,

a2 + b2 + c2 − 2(a3 + b3 + c3) ≤ 3abc.

We know that

a2 + b2 + c2 = 1− 6q,

a3 + b3 + c3 = 1− 9q + 3r.

Thus the original inequality becomes

12q − 9r ≤ 1.

This one was previously considered, as result of the constant
λ = 9

4 , in the inequality (7).

7
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♣

Example 3.

British Mathematical Olympiad 1999.

Let a, b, c be positive real numbers such that a + b + c = 1.
Show that

7(ab+ bc+ ca) ≤ 2 + 9abc.

Solution:

After division by 7, the inequality is

ab+ bc+ ca− 9/7 · abc ≤ 2/7.

Clearly true by the constant λ = 9
7 in the inequality (7).

4.2 Problems from the journal Mathematical
Reflections

Example 4.

Problem O11. Iurie Boreico and Ivan Borsenco.

Let a, b, c be positive real numbers not all equal. Prove that

a2b+ a2c+ b2a+ b2c+ c2a+ c2b− 6abc

a2 + b2 + c2 − ab− bc− ca
≥ 16abc

(a+ b+ c)2
.

Solution:

The inequality is homogeneous. So, we can assume a+b+c = 1.
With the notation from the pqr−Inequality, we have p = 1

3 , and

3q

25− 144q
≥ r.

8
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By the upper bound for r, provided by the main theorem, it will
be enough to prove that

3q

25− 144q
≥ (p− s)2(p+ 2s).

Setting x = 9q, with 0 < x ≤ 1, this inequality is

24x2 − 49x+ 25 ≥ (25− 16x)(1− x)
√
1− x

Squaring we obtain

256x5 − 992x4 + 1441x3 − 930x2 + 225x ≥ 0,

and this polynomial factors as

x(16x− 15)2(x− 1)2 ≥ 0.

♣

Example 5.

Problem O388. Nguyen Viet Hung, Hanoi University of Sci-
ence, Vietnam.

Prove that in any triangle ABC with area S,

mambmc(ma +mb +mc)√
m2

am
2
b +m2

bm
2
c +m2

cm
2
a

≥ 3S.

where ma,mb,mc are the medians.

Solution:

The initial inequality was proposed with the lower bound 2S

9
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instead of the stronger 3S. Squaring, denoting the medians by
x, y, z respectively and using the well-known formula

9S2 = (ma+mb+mc)(mb+mc−ma)(mc+ma−mb)(ma+mb−mc),

we need to show that

x2y2z2(x+y+z) ≥ (x2y2+y2z2+z2x2)(y+z−x)(z+x−y)(x+y−z),

for x, y, z positive real numbers. With the notation from the
pqr−Inequality

x2y2 + y2z2 + z2x2 = 9(p2 − s2)2 − 6pr,

(y + z − x)(z + x− y)(x+ y − z) = 9p(p2 − 4s2)− 8r.

The inequality to be proved becomes

F = f(r) = pr2 +
[
3(p2 − s2)2 − 2pr

] [
9p(4s2 − p2) + 8r

]
≥ 0,

= −15pr2 +
[
24(p2 − s2)2 − 18p2(4s2 − p2)

]
r +

+ 27p(p2 − s2)2(4s2 − p2) ≥ 0.

The function f(r) is clearly concave, so to find the minimal value
it’s enough to look at the endpoints for r given by the theorem.
If r = (p − s)2(p + 2s) then F = 6s2(p − s)2(p + 2s)3 ≥ 0. If
p ≥ 2s and r = (p+s)2(p−2s) then F = 6s2(p+s)2(p−2s)3 ≥ 0.
Finally, if p < 2s then r > 0. So, F = 27p(p2−s2)2(4s2−p2) ≥ 0.

♣

Example 6.

Problem O399. Titu Andreescu, University of Texas at Dallas,
USA.

Let a, b, c be positive real numbers. Prove that

a5 + b5 + c5

a2 + b2 + c2
≥ 1

2
(a3 + b3 + c3 − abc).

10
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Solution:

We proceed by writing the sum of powers as functions of the
symmetric elementary ones. Denote

x = a+ b+ c,

y = ab+ bc+ ca,

z = abc.

Then

a5 + b5 + c5 = x5 − 5x3y + 5xy2 + 5x2z − 5yz,

a3 + b3 + c3 = x3 − 3xy + 3z,

a2 + b2 + c2 = x2 − 2y.

Now the original inequality is

x5 − 5x3y + 4xy2 + 8x2z − 6yz ≥ 0.

Since the original inequality is homogeneous we can suppose
without loss of generality that a + b + c = 1, that is to say
x = 1. So, we need to prove that

4y2 − 5y + 1 + (8− 6y)z ≥ 0

with 0 < y ≤ 1
3 and z > 0 due to the well-known inequality

(a+b+c)2 ≥ 3(ab+bc+ca). Clearly 8−6y > 0 and supposing 0 <
y < 1

4 the inequality is done because 4y2−5y+1 = (y−1)(4y−1).
It only remains to consider the case 1

4 ≤ y ≤ 1
3 . This is the hard

one, we proceed by the application of the pqr−Inequality. Say,

z ≥ max


0,

(
1

3
+

√
1

9
− y

3

)2

·

(
1

3
− 2

√
1

9
− y

3

)
 .

11
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But
1

3
≥ 2

√
1

9
− y

3
⇔ y ≥ 1

4
,

so

z ≥

(
1

3
+

√
1

9
− y

3

)2

·

(
1

3
− 2

√
1

9
− y

3

)
.

After several algebraic transformations the inequality to be proved
becomes

27(4y2−5y+1)+(8−6y)(9y−2)+(8−6y)(6y−2)
√
1− 3y ≥ 0,

equivalent to

54y2 − 51y + 11 ≥ (36y2 − 60y + 16)
√

1− 3y ≥ 0,

squaring we obtain

3888y5 − 11340y4 + 13068y3 − 6723y2 + 1566y − 135 ≥ 0,

or

27(4y − 1)(4y2 − 8y + 5)(3y − 1)2 ≥ 0,

completing the proof.

♣

Example 7.

Problem 35. Viorel Vajaitu and Alexandru Zaharescu.
Gazeta Matematică. [1]

Let a, b, c be positive real numbers. Show that

ab

a+ b+ 2c
+

bc

b+ c+ 2a
+

ca

c+ a+ 2b
≤ 1

4
(a+ b+ c).

12
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Solution:

Since the inequality is homogeneous, we can suppose without
loss of generality a + b + c = 1. So, the original inequality can
be rewritten as

ab

c+ 1
+

bc

a+ 1
+

ca

b+ 1
≤ 1

4
.

After clearing denominators, we obtain

(a+1)(b+1)(c+1) ≥ 4ab(a+1)(b+1)+4bc(b+1)(c+1)+4ca(a+1)(c+1).

The left side is

abc+ ab+ bc+ ca+ a+ b+ c+ 1,

= abc+ ab+ bc+ ca+ 2,

= r + 3q + 2.

The right side is

4(a2b2 + b2c2 + c2a2) + 8(ab+ bc+ ca)− 12abc,

= 36q2 − 24pr + 24q − 12r,

= 36q2 + 24q − 20r.

So, all that we need to prove is

21r ≥ 36q2 + 21q − 2.

Let us apply the main inequality.

p− 2s < 0 ⇔ 0 < q <
1

12
,

in this case we have to prove that

36q2 + 21q − 2 ≤ 0 ⇔ (3q + 2)(12q − 1) ≤ 0.

13
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The other case is when

p− 2s ≥ 0 ⇔ 1

12
≤ q ≤ 1

9
.

Namely,

21 ·

(
2

9
− q +

2

3

√
1

9
− q

)
·

(
1

3
− 2

√
1

9
− q

)
≥ 36q2 + 21q − 2.

Setting x = 9q, the above inequality becomes

2(1− x2) ≥ 7(1− x)
√
1− x, for

3

4
≤ x ≤ 1.

This is equivalent to

4x2 + 57x− 45 > 0 ⇔ (x+ 15)(4x− 3) > 0.

♣

Example 8.

Austrian-Polish Mathematical Olympiad 2000.

Let a, b, c be non-negative real numbers such that a+ b+ c = 1.
Prove that

2 ≤ (1− a2)2 + (1− b2)2 + (1− c2)2 ≤ (1 + a)(1 + b)(1 + c).

Solution:

Let us prove the left side.

(1− a2)2 + (1− b2)2 + (1− c2)2 ≥ 2,

⇔ a4 + b4 + c4 − 2(a2 + b2 + c2) + 3 ≥ 2,

⇔ 18q2 + 4r ≥ 0.

14
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The right side is equivalent to

ab+ bc+ ca+ abc+ 2 ≥ a4 + b4 + c4 − 2(a2 + b2 + c2) + 3.

This one can be rewritten as

r ≤ q(1− 6q).

By the theorem, all that we need to show is

(
1

3
−

√
1

9
− q

)2

·

(
1

3
+ 2

√
1

9
− q

)
≤ q(1− 6q).

After several algebraic transformations we obtain

6561q4 + 729q3 − 81q2 + 27q ≥ 0.

This expression factors as

27q(243q3 + 27q2 − 3q + 1).

Setting x = 3q, the cubic is

9x3 + 3x2 − x+ 1,

which is clearly positive since the quadratic 3x2−x+1 is positive,
completing the proof.

♣

Example 9.

Polish Mathematical Olympiad 1996.

Let a, b, c be positive real numbers, such that a + b + c = 1.
Show that

a

a2 + 1
+

b

b2 + 1
+

c

c2 + 1
≤ 9

10
.

15



Mathematics Competitions. Vol 33 No. 1. 2020

75

Solution:

After clearing denominators this inequality is

9r2 + (12− 30q)r + (81q2 − 84q + 18) ≥ 0.

It suffices to prove the discriminant ∆ of this quadratic is nega-
tive.

∆ = −2016q2 + 2304q − 504 < 0 ⇔ 28q2 − 32q + 7 > 0.

Since we know 1−9q ≥ 0, it is appropriate to write the quadratic
in q as a new quadratic in (1− 9q). Thus we get,

28

81
(1− 9q)2 +

232

81
(1− 9q) +

307

81
≥ 0.

♣

Example 10.

Polish Mathematical Olympiad 1999.

Let a, b, c be positive real numbers with sum 1. Show that

a2 + b2 + c2 + 2
√
3abc ≤ 1.

Solution:

The original inequality is successively,

ab+ bc+ ca ≥
√
3abc,

a2b2 + b2c2 + c2a2 ≥ abc.

By identity (5), and from p = 1
3 , we get,

81s4 − 18s2 + 1 ≥ 27r.

16
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Now, by the pqr−Inequality, we need to show that

81s4 − 18s2 + 1 ≥ (1− 3s)2(1 + 6s),

which is equivalent to

81s4 − 54s3 + 9s2 ≥ 0.

Finally, this expression factors as

9s2(3s− 1)2 ≥ 0.

This completes the proof.

♣

5 Problems for Independent Study

In the following problems the numbers a, b, c are positive real.

1. Given a+ b+ c = 1. Show that

ab

1− c2
+

bc

1− a2
+

ca

1− b2
≤ 3

8
.

2. Given a+ b+ c = 2. Prove that

(a)
√
a2b+ b2c+ c2a+

√
ab2 + bc2 + ca2 ≤ 2.

(b)
√
a3b+ b3c+ c3a+

√
ab3 + bc3 + ca3 ≤ 2.

3. Let x, y, z be positive real numbers. Prove that

2x2y2z2

x3y3 + y3z3 + z3x3
+

1

3
≥ 3xyz

x3 + y3 + z3
.

17
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4. (Russian Mathematical Olympiad 2005).
Given a2 + b2 + c2 = 1. Show that

a

a3 + bc
+

b

b3 + ca
+

c

c3 + ab
≥ 3.

5. Let a, b, c be non-negative real numbers, such that a2 +
b2 + c2 = 1. Show that

1 ≤ a+ b+ c− abc ≤ 8
√
3

9
.

6. (Vasile Ĉırtoaje).
Given a2 + b2 + c2 = 3. Prove that

(2− ab)(2− bc)(2− ca) ≥ 1.

7. (Vasile Ĉırtoaje).
Given abc = 1. Prove that

a2 + b2 + c2 + 6 ≥ 3

2
(a+ b+ c+ ab+ bc+ ca).

8. (Le Trung Kien, Vo Quoc Ba Can).
Given

ab+ bc+ ca+ 6abc = 9.

Show that

a+ b+ c+ 3abc ≥ 6.
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Remembering John Horton Conway

Peter James Taylor 
University of Canberra

pjt013@gmail.com

Born: 26 December 1937, Liverpool, England

Died: 11 April 2020, New Jersey, USA (age 82)

The mathematics community was shocked to learn of John Conway’s 
death following the main announcement made by Gee [2]. Conway 
had had health issues, but contracted COVID-19 and died of it.

John Horton Conway FRS studied at Gonville and Caius College, 
Cambridge, where he obtained Bachelor, Masters and Doctoral 
degrees, and was a professor there until 1987, when he moved to 
Princeton University as the John von Neumann Professor in Applied 
and Computation Mathematics, Emeritus from 2013.

John Conway achieved so many famous results and worked in so 
many fields that they are well documented elsewhere, and I will not 
attempt to undertake to relist them. Rather, I will briefly discuss how 
it came about that he was special guest of the Australian Mathematics 
Trust when it hosted the World Federation of National Mathematics 
Competitions (WFNMC) conference in Melbourne in 2002. 

Probably his most famous result was the development of the Game 
of Life, which was introduced to the public by Martin Gardner in 
Scientific American in 1970. But despite the large output of beautiful 
work which he achieved, there were two features of Conway which 
stood out, features which are not normally expected of a high-level 
researcher.

One of these was the way in which he could convey interesting and 
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very high level mathematics to an average audience, in a book or 
engagingly in person, exciting and enthusing the audience. People 
would travel a long way to hear a Conway lecture.

The second feature was Conway’s enthusiasm for challenge, not just 
meeting challenge, but in particular issuing challenge. He not only 
enjoyed solving problems, but importantly he was a master creator. 
Both of these features made him highly eligible to be involved with 
our problem creators.

He also wrote many highly readable books. His book which first 
attracted my attention was Winning Ways for Mathematical Plays [1], 
which he co-authored with Richard K Guy and Elwyn Berlekamp.

So I was already well informed about Conway, but in 1990 I visited 
Moscow and discovered the very high esteem in which he was held 
also in the Soviet Union and presumably other Eastern Bloc countries 
after my discussion with Kolya Vasiliev [3]. Kolya chaired the 
problems committee at the time to created the elegant problems which 
have always appeared in the Tournament of Towns.

Bulgaria hosted the second WFNMC Conference in Pravets in 1994 
and to the delight of all who attended, the Bulgarians arranged to have 
Paul Erdös as their special guest. Of course Erdös gave the principal 
keynote lecture, but the main value of his attendance was that, in this 
relatively small and convivial event in which the attendees virtually 
live together for several days, over the course of the conference 
everyone had their chance to meet Erdös and discuss mathematics 
with him.

In 1998 Australia was chosen to host the 4th WFNMC Conference in 
2002, to be held in Melbourne. Conway was on my list to play a similar 
role to that of Erdös in 1994. He was to come to Canberra in 2000, 
where he gave one of his trademark lectures to a packed audience and 
after questions he went on to one of his well-known sessions where he 
could name the day of the week for any date offered from the audience, 
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which was very popular. While in Canberra I seized the opportunity 
to discuss the WFNMC conference with him and invite him to be our 
guest. He agreed immediately and fulfilled his promise two years later.

At the 2002 conference in Melbourne we opened his keynote lecture to 
the public, and it was given in a large packed theatre at The University 
of Melbourne. He also attended all other sessions and mixed fully with 
the 60 or so mathematicians who attended the conference. He clearly 
enjoyed his interaction with all of us.

It was a great privilege for me and the other participants to have 
known Conway, and I am sure we all agree he was one of the very 
great mathematicians of his era. It is a very sad loss that he become a 
victim of this insidious virus.
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International Mathematics  
Tournament of Towns

Andy Liu

Andy Liu is a Canadian mathematician. He is a profes-
sor emeritus in the Department of Mathematical and 
Statistical Sciences at the University of Alberta. Liu 
attended New Method College in Hong Kong.He then 
did his undergraduate studies in mathematics at Mc-
Gill University, and earned his Ph.D. in 1976 from the 
University of Alberta, under the supervision of Harvey 
Abbott, with a dissertation about hypergraphs. He was 
the leader of the Canadian team at the International 

Mathematical Olympiad in 2000 (South Korea) and 2003 (Japan) and acts as 
vice-president of the Tournament of Towns.

Selected Problems from the Spring 2019 Papers

1. Do there exist seven distinct positive integers with sum 100 such 
that they are determined uniquely by the fourth largest among 
them?

2. The sum of all terms of a sequence of positive integers is 20. No 
term is equal to 3, and the sum of any number of consecutive 
terms is not equal to 3. Can such a sequence have more than 10 
terms?

3. Prove that any triangle can be cut into 2019 quadrilaterals with 
both incircles and circumcircles.

4. Prove that for any two adjacent digits of a positive multiple of 
7, there exists a digit such that no matter how many times it is 
inserted between these two digits, the resulting number is still a 
multiple of 7.

5. In triangle ABC, AB = BC. K is a point inside such that KC = BC and  
KAC = 30◦. Determine AKB.
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6. As the assistant watches, the audience puts a coin in each of two 
of 13 boxes in a row. The assistant opens one box that does not 
contain a coin and exits. The magician enters and opens four 
boxes simultaneously. Devise a method that will guarantee that 
both coins are in the four boxes opened by the magician.

7. There are ( )cards each containing a different subset of size 5 of 
the variables x1, x2, ..., x10. Anna takes a card, Boris takes a card, 
and then turns alternate until all the cards have been taken. Boris 
then chooses the values for the variables, provided that 0 ≤ x1 ≤ ··· 
≤ x10. Can he ensure that the sum of the products of the numbers 
on his cards is greater than the sum of the products of the numbers 
on Anna’s cards?

8. Starting at (0,0), each segment of a polygonal line either goes up 
or to the right, and can change directions only at lattice points. 
Associated with each polygonal line is a chessboard consisting of 
all unit squares that share at least one point with the polygon line. 
Prove that for any integer n > 2, the number of polygonal lines 
whose associated chessboards can be dissected into dominoes in 
exactly n different ways is equal to φ(n), the number of positive 
integers that are less than n and relatively prime to n.

Solutions

1. If the fourth largest number is 22, then the sum of the largest four 
numbers is at least 22+23+24+25 = 94. Hence the sum of the sma-
llest three numbers is at most 100− 94 = 6. They must be 1, 2 and 
3, and the other four numbers must be 22, 23, 24 and 25.

2. Such a sequence with 11 terms is 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1.

3. Divide each side of a triangle into 26 equal parts and join the 
points of division by lines parallel to the sides of the triangle. 
This divides the triangle into 262 = 676 triangles. If we combine 
the four at the top, we have 673 triangles. Now divide each into 
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three kites by dropping from its incentre perpendiculars to the si-
des. A kite always has an incircle, and a kite with two right angles 
opposite each other has a circumcircle. The number of kites is 673 
× 3 = 2019.

4. Let two adjacent digits of a multiple of 7 be chosen. We separate 
it into two numbers x and y, with x consisting of all the digits 
from the left up to and including the first of the two chosen digits, 
and y consisting of the remaining digits. Let n be the number of 
digits in y. Then the original multiple is 10nx + y, and the number 
obtained by inserting a digit d between the chosen digits is 
10n(10x + d) + y. The difference between these two numbers is 
10n(9x + d). Since every seventh number is a multiple of 7, there 
exists at least one value for d such that 9x + d is a multiple of 7. 
Then the new number will also be a multiple of 7. We claim that 
the same digit d can be added k times between the chosen digits 
for any positive integer k, and we will still have a multiple of 7. 
We use mathematical induction on k. The basis k = 1 has already 
be established. Suppose the claim holds up to some k ≥ 1. The 
difference between the number after k copies of d has been added 
and the number after k + 1 copies of d has been added is 10n+k(9x 
+ d), which is a multiple of 7. This completes the inductive 
argument.

5. Let L be the point such that BCL is an equilateral triangle, as 
shown in the diagram below. Perform a counterclockwise 60º ro-
tation about L, mapping C into B and K into D. We claim that D 
coincides with A. Note that KLC = 60º + KLB = DLB. Since 
LC = LB and LK = LD, triangles KLC and DLB are congruent. 
Hence DB = KC = BC. Moreover, since K and L are symmetric 
about DC, KDC = 30º. This  justifies the claim. It follows that  

AKB = LKB = (360º− 60º) = 150º.
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6. The assistant mentally arranges the boxes in clockwise order, 
dividing the circle into thirteen unit arcs. The length of a chord 
is measured by the number of unit arcs on the minor arc it cuts 
off. Consider the quadrilateral in the diagram below. The lengths 
of its four sides and two diagonals are 1, 2, 3, 4, 5 and 6 in some 
order, covering all possible chord lengths. When the audience 
chooses two of the boxes, the assistant determines the length of 
the chord joining them. Then he rotates the quadrilateral about 
the centre of the circle until this chord coincides with a side or a 
diagonal of the quadrilateral. There is always a unique position 
for the quadrilateral. The assistant will open the box immediately 
preceding the two adjacent boxes on the quadrilateral. For 
example, if the boxes chosen by the audience are numbered 7 
and 9, the assistant will rotate the quadrilateral to the position 
shown in dotted lines in the diagram below, and will open the 
box numbered 2. When the magician comes in, she looks at the 
number n of the open box. Then she opens the boxes numbered 
n + 1, n + 2, n + 5 and n + 7, reduced modulo 13. Continuing 
the example, she will open the boxes numbered 2+1=3, 2+2=4, 
2+5=7 and 2+7=9.

D
L

K

B

C
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7. Boris always chooses x1 = x2 = x3 = 0 and x8 = x9 = x10 = 100. He 
will choose 1 ≤ x4 ≤ x5 ≤ x6 ≤ x7 ≤ 12 according to Anna’s action. 
Then the only cards which matter are those containing all of x8, 
x9 and x10 as well as two of x4, x5, x6 and x7. Thus the game sim-
plifies to one with six cards containing the pairs (x4,x5), (x4,x6), 
(x4,x7), (x5,x6), (x5,x7) and (x6,x7). In the first round, Anna will 
take (x6,x7). Boris takes (x5,x7). Since both (x4,x7) and (x5,x6) 
are better than (x4,x6), each will get one of them in the second 
round. In the final round, Anna takes (x4,x6) over (x4,x5). If Anna 
takes (x4x7) in the second round, Boris chooses x4 = 1, x5 = 3,  
x6 = 4 and x7 = 5. Anna’s sum is 20 + 5 + 4 = 29 while Boris’s sum is  
15 + 12 + 3 = 30. If Anna takes (x5,x6) in the second round, Boris 
chooses  x4 = 3, x5 = 4, x6 = 5 and x7 = 12. Anna’s sum is 60 + 20 
+ 15 = 95 while Boris’s sum is 48 + 36 + 12 = 96. Hence Boris 
always wins.

8. A polygonal line may be represented by a word in which every 
letter is either U for up or R for right. We use the notation f(w) to 
denote the number of ways into which the associated chessboard 
of the word w may be dissected into dominoes. Thus the word 
RRURUURU represents the polygonal line in the first diagram 
below. The subsequent diagrams show the polygonal lines repre-
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sented by words obtained from RRURUURU by contracting one 
letter at a time from the end, down to the empty word. In each case, 
the associated chessboard is also shown, along with the value of  f. 

The above values of f are calculated recursively, based on the last 
two. We have   

 f(RR) = f(R) + f(Ø) = 5;

 f(RRU) = f(Ø) + f(RR) = 7;

 f(RRUR) = f(RRU) + f(Ø) = 9;

 f(RRURU) = f(Ø) + f(RRUR) = 11;

 f(RRURUU) = f(RRUR) + f(RRURU) = 20;

 f(RRURUUR) =  f(RRURUU) + f(RRUR) = 29;

 f(RRURUURU) = f(RRUR) + f(RRURUUR) = 38.

 In each case, f(w) is the sum of two terms. The first term is obtai-
ned when the top right square of the chessboard associated with 
w is covered by a vertical domino. The second term is obtained 
when the top right square of the chessboard associated with w is 
covered by a horizontal domino. The placement of this domino 
may force the placement of other dominoes.
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In the first and the fifth equations, where the last two letters of w 
are the same, f(w) is the sum of the preceding two terms. In the 
other five equations, where the last two letters of w are different, 
f(w) is the sum of the preceding term and the last term for which 
the next two letters are the same, if such a term exists. Otherwise, 
f(w) is just one more than the preceding term.

For the second, the third and the fourth equations, such a term 
exists, namely f(Ø) = f(RR) − f(R). The second equation may 
be rewritten as f(RRU) = (f(RR) − f(R)) + f(RR) = 2f(RR) − f(R). 
For the third and the fourth equations, we have f(RRURUUR) = 
2f(RRU)−f(RR) and f(RRURU) = 2f(RRUR)−f(RRU).

For the last two equations, such a term is f(RRUR) = f(RRURUU) 
− f(RRURU). For the sixth equation, we have f(RRURUUR) 
= 2f(RRURUU) − f(RRURU). Similarly, f(RRURUURU) = 
2f(RRURUUR) − f(RRURUU) for the last equation. In other 
words, f(w) is the difference between twice the preceding term 
and the term before that.

In every sequence such as {2,3,5,7,9,11,20,29,38}, the first two 
terms are always 2 and 3. If a and b are two consecutive terms, 
then the next term is either a+b or 2b−a. It follows that a and b 
are relatively prime, and a < b < 2a. Let the last two terms be m 
and n. Then m and n are relatively prime, and m < n < 2m. We can 
reconstruct the entire sequence backwards. If 3m > 2n, as in the 
case 3 × 29 > 2 x 38, the preceding term must be 2m − n or 20 in 
our example. If 3m < 2n, as in 3 × 11 < 2 × 20, the preceding term 
must be n − m, or 9 in our example. Continuing this way, we can 
trace the sequence back to 3 and 2.

Such a numerical sequence matches exactly two words, one star-
ting with U and the other starting with R. There are exactly ø(n) 
values of m that satisfy m < n < 2m and are relatively prime to n. 
Thus there are exactly ø(n) words whose associated chessboards 
can be dissected into dominoes in exactly n ways.
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The 60th International Mathematical Olympiad

Angelo Di Pasquale
IMO Team Leader, Australia

The 60th International Mathematical Olympiad (IMO) was held 11-
22 July 2019 in the city of Bath, United Kingdom.  This year was the 
third time that the UK has hosted the IMO. A total of 621 high school 
students from 112 countries participated1. Of these, 65 were girls. 

Each participating country may send a team of up to six students, 
a Team Leader and a Deputy Team Leader.  At the IMO the Team 
Leaders, as an international collective, form what is called the {\em 
Jury}.  This Jury was ably chaired by Adam McBride.2

The first major task facing the Jury is to set the two competition papers.  
During this period the Leaders and their observers are trusted to keep 
all information about the contest problems completely confidential.  

The local Problem Selection Committee had already shortlisted 
32 problems from the 204 problem proposals submitted by 58 of 
the participating countries from around the world. During the Jury 
1  This is the largest number of individual students and the largest number of countries in the 

history of the IMO.

2  Adam McBride also chaired the Jury the last time the IMO was held in the UK back in 2002. 

Angelo was twice a contestant at the International 
Mathematical Olympiad. He completed a PhD 
in mathematics at the University of Melbourne 
studying algebraic curves. He is currently Direc-
tor of Training for the Australian Mathematical 
Olympiad Committee (AMOC), and Australian 
Team Leader at the International Mathematical 
Olympiad.
He enjoys composing Olympiad problems for ma-
thematics contests.
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meetings four of the shortlisted problems had to be discarded from 
consideration due to being too similar to material already in the public 
domain.  

Eventually, the Jury finalised the exam problems and then made 
translations into the 58 languages required by the contestants.  

The six problems that ultimately appeared on the IMO contest papers 
may be described as follows.

1. An easy functional equation proposed by South Africa. 

2. A medium geometry problem proposed by Ukraine.

3. A difficult combinatorics problem in algorithmic graph theory 
couched in the language of social networking. It was proposed by 
Croatia.

4. An easy number theory problem proposed by El Salvador.

5. A medium to easy problem in combinatorics proposed by the 
USA.

6. A difficult triangle geometry problem proposed by India.

These six problems were posed in two exam papers held on Tuesday 
16 July and Wednesday 17 July.  Each paper had three problems. The 
contestants worked individually.  They were allowed four and a half 
hours per paper to write their attempted proofs.  Each problem was 
scored out of a maximum of seven points.  

After the exams, the Leaders and their Deputies spent about two days 
assessing the work of the students from their own countries, guided by 
marking schemes, which had been agreed to earlier.  A local team of 
markers called Coordinators also assessed the papers.  They too were 
guided by the marking schemes but are allowed some flexibility if, for 
example, a Leader brought something to their attention in a contestant’s 
exam script that was not covered by the marking scheme. The Team 
Leader and Coordinators have to agree on scores for each student of 
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6. A difficult triangle geometry problem proposed by India.

These six problems were posed in two exam papers held on Tuesday
16 July and Wednesday 17 July. Each paper had three problems. The
contestants worked individually. They were allowed four and a half
hours per paper to write their attempted proofs. Each problem was
scored out of a maximum of seven points.

After the exams, the Leaders and their Deputies spent about two days
assessing the work of the students from their own countries, guided by
marking schemes, which had been agreed to earlier. A local team of
markers called Coordinators also assessed the papers. They too were
guided by the marking schemes but are allowed some flexibility if, for
example, a Leader brought something to their attention in a contes-
tant’s exam script that was not covered by the marking scheme. The
Team Leader and Coordinators have to agree on scores for each student
of the Leader’s country in order to finalise scores. Any disagreements
that cannot be resolved in this way are ultimately referred to the Jury.

The contestants found Problem 1 to be the easiest with an average
score of 5.12. Problem 6 was the hardest, averaging just 0.4. The score
distributions by problem number were as follows.

Mark P1 P2 P3 P4 P5 P6

0 73 251 520 211 156 558

1 65 135 46 63 20 25

2 6 30 3 4 168 7

3 24 6 6 7 12 0

4 14 6 5 13 5 1

5 5 3 9 19 7 0

6 52 92 4 47 3 3

7 382 98 28 257 250 27

Mean 5.18 2.40 0.57 3.74 3.57 0.40

The medal cuts were set at 31 points for Gold, 24 for Silver and 17 for
Bronze. The medal distributions3 were as follows.

3The total number of medals must be approved by the Jury and should not normally

2

The medal cuts were set at 31 points for Gold, 24 for Silver and 17 
for Bronze. The medal distributions3 were as follows.

Gold Silver Bronze Total
Number 52 94 156 302
Proportion 8.4% 15.1% 25.1% 48.6%

These awards were presented at the closing ceremony. 

Of those who did not get a medal, a further 144 contestants re-
ceived an Honourable Mention for scoring full marks on at least 
one problem.

The following six contestants achieved the most excellent feat of 
a perfect score of 42.  

the Leader’s country in order to finalise scores.  Any disagreements 
that cannot be resolved in this way are ultimately referred to the Jury. 

The contestants found Problem 1 to be the easiest with an average 
score of 5.18. Problem 6 was the hardest, averaging just 0.4. 

The score distributions by problem number were as follows.

3 The total number of medals must be approved by the Jury and should not normally exceed 
half the total number of contestants. The numbers of Gold, Silver and Bronze medals 
should be approximately in the ratio 1:2:3.
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• Baiting Xie, People’s Republic of China

• Zhizhen Yuan, People’s Republic of China

• Jan Fornal, Poland

• Youngjun Cho, Republic of Korea

• Colin Shanmo Tang, USA 

• Daniel Zhu, USA

The 2019 IMO was organised by the United Kingdom Mathe-
matics Trust.

Hosts for future IMOs have been secured up to 2025 as follows.

8-18 July, 2020* Russian Federation

7-16 July, 2021 USA

2022  Norway

2023 Japan

2024   --- 

2025 Australia

Much of the statistical information found in this report can also 
be found on the official website of the IMO.

www.imo-official.org

 

* Due to the pandemic, IMO 2020 will be held virtually in the month of September.
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Day: 1

Tuesday, July 16, 2019

Problem 1. Let Z be the set of integers. Determine all functions
f : Z → Z such that, for all integers a and b,

f(2a) + 2f(b) = f(f(a+ b)).

Problem 2. In triangle ABC, point A1 lies on side BC and point
B1 lies on side AC. Let P and Q be points on segments AA1 and BB1,
respectively, such that PQ is parallel to AB. Let P1 be a point on
line PB1, such that B1 lies strictly between P and P1, and ∠PP1C =
∠BAC. Similarly, let Q1 be a point on line QA1, such that A1 lies
strictly between Q and Q1, and ∠CQ1Q = ∠CBA.

Prove that points P , Q, P1, and Q1 are concyclic.

Problem 3. A social network has 2019 users, some pairs of whom are
friends. Whenever user A is friends with user B, user B is also friends
with user A. Events of the following kind may happen repeatedly, one
at a time:

Three users A, B, and C such that A is friends with both B
and C, but B and C are not friends, change their friendship
statuses such that B and C are now friends, but A is no
longer friends with B, and no longer friends with C. All
other friendship statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010
friends each. Prove that there exists a sequence of such events after
which each user is friends with at most one other user.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

4
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Day: 2

Wednesday, July 17, 2019

Problem 4. Find all pairs (k, n) of positive integers such that

k! = (2n − 1)(2n − 2)(2n − 4) · · · (2n − 2n−1).

Problem 5. The Bank of Bath issues coins with an H on one side
and a T on the other. Harry has n of these coins arranged in a line from
left to right. He repeatedly performs the following operation: if there
are exactly k > 0 coins showing H, then he turns over the kth coin
from the left; otherwise, all coins show T and he stops. For example,
if n = 3 the process starting with the configuration THT would be
THT → HHT → HTT → TTT , which stops after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite
number of operations.

(b) For each initial configuration C, let L(C) be the number of op-
erations before Harry stops. For example, L(THT ) = 3 and
L(TTT ) = 0. Determine the average value of L(C) over all 2n

possible initial configurations C.

Problem 6. Let I be the incentre of acute triangle ABC with AB �=
AC. The incircle ω of ABC is tangent to sides BC, CA, and AB at
D, E, and F , respectively. The line through D perpendicular to EF
meets ω again at R. Line AR meets ω again at P . The circumcircles
of triangles PCE and PBF meet again at Q.

Prove that lines DI and PQ meet on the line through A perpendicular
to AI.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

5
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Some Country Totals
Rank Country Total

1 People’s Republic of China 227
1 United States of America 227
3 Republic of Korea 226
4 Democratic People’s Republic of Korea 187
5 Thailand 185
6 Russian Federation 179
7 Vietnam 177
8 Singapore 174
9 Serbia 171

10 Poland 168
11 Hungary 165
11 Ukraine 165
13 Japan 162
14 Indonesia 160
15 India 156
15 Israel 156
17 Romania 155
18 Australia 154
19 Bulgaria 152
20 United Kingdom 149
21 Taiwan 148
22 Kazakhstan 146
23 Islamic Republic of Iran 145
24 Canada 144
25 France 142
26 Mongolia 141
27 Italy 140
28 Peru 137
29 Brazil 135
29 Turkey 135
31 Philippines 129
32 Germany 126
33 Saudi Arabia 124
34 Norway 122
35 Belarus 119
36 Estonia 118
37 Hong Kong 117
37 Netherlands 117
39 Slovakia 114
40 Greece 112
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Distribution of Awards at the 2019 IMO

Country Total Gold Silver Bronze HM

Albania 37 0 0 0 2
Algeria 46 0 0 1 3
Angola 0 0 0 0 0
Argentina 95 0 0 3 1
Armenia 104 0 2 1 2
Australia 154 2 1 3 0
Austria 84 0 0 4 1
Azerbaijan 98 0 0 3 2
Bangladesh 76 0 0 1 4
Belarus 119 0 2 2 2
Belgium 75 0 1 1 3
Bolivia 9 0 0 0 0
Bosnia and Herzegovina 84 0 0 0 5
Botswana 2 0 0 0 0
Brazil 135 0 2 4 0
Bulgaria 152 0 5 1 0
Cambodia 10 0 0 0 1
Canada 144 1 1 4 0
Chile 20 0 0 0 2
Colombia 77 0 0 2 2
Costa Rica 34 0 0 0 2
Croatia 110 0 0 3 3
Cuba 23 0 0 0 2
Cyprus 47 0 0 0 3
Czech Republic 106 0 0 4 2
Democratic People’s Republic of Korea 187 3 3 0 0
Denmark 105 0 1 2 3
Dominican Republic 5 0 0 0 0
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Country Total Gold Silver Bronze HM

Ecuador 32 0 0 0 3
Egypt 12 0 0 0 0
El Salvador 45 0 0 2 0
Estonia 118 0 1 4 0
Finland 78 0 1 1 2
France 142 0 2 4 0
Georgia 108 0 1 4 1
Germany 126 1 0 3 2
Ghana 11 0 0 0 1
Greece 112 0 1 2 3
Guatemala 4 0 0 0 0
Honduras 3 0 0 0 0
Hong Kong 117 0 1 3 1
Hungary 165 1 3 2 0
Iceland 37 0 0 0 2
India 156 1 4 0 1
Indonesia 160 1 4 1 0
Iraq 17 0 0 0 1
Ireland 61 0 1 0 2
Islamic Republic of Iran 145 1 2 3 0
Israel 156 1 3 2 0
Italy 140 0 2 4 0
Japan 162 2 2 2 0
Kazakhstan 146 0 2 4 0
Kenya 0 0 0 0 0
Kosovo 43 0 0 0 3
Kyrgyzstan 19 0 0 0 0
Latvia 56 0 0 0 4
Lithuania 96 0 0 3 3
Luxembourg 9 0 0 0 0
Macau 92 0 0 3 3
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Country Total Gold Silver Bronze HM

Malaysia 71 0 0 2 2
Mexico 111 0 1 3 2
Mongolia 141 1 1 3 1
Montenegro 33 0 0 0 1
Morocco 80 0 0 1 4
Myanmar 11 0 0 0 0
Nepal 17 0 0 0 1
Netherlands 117 0 1 4 1
New Zealand 89 0 0 2 2
Nicaragua 17 0 0 0 2
North Macedonia 47 0 0 0 2
Norway 122 0 1 3 2
Pakistan 34 0 0 1 1
Panama 37 0 0 1 1
Paraguay 18 0 0 0 0
People’s Republic of China 227 6 0 0 0
Peru 137 0 3 1 1
Philippines 129 0 1 5 0
Poland 168 1 3 2 0
Portugal 93 0 1 1 4
Puerto Rico 3 0 0 0 0
Republic of Korea 226 6 0 0 0
Republic of Moldova 100 0 1 1 3
Russian Federation 179 2 4 0 0
Saudi Arabia 124 0 1 4 0
Serbia 171 3 1 2 0
Singapore 174 2 4 0 0
Slovakia 114 0 1 3 2
Slovenia 109 0 2 1 3
South Africa 106 0 0 4 2
Spain 110 0 0 5 1
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Country Total Gold Silver Bronze HM

Sri Lanka 73 0 0 1 5
Sweden 92 1 0 1 3
Switzerland 89 0 0 3 1
Syria 92 0 1 1 3
Taiwan 148 1 2 3 0
Tajikistan 82 0 1 1 2
Tanzania 3 0 0 0 0
Thailand 185 3 3 0 0
Trinidad and Tobago 34 0 0 0 2
Tunisia 48 0 0 0 4
Turkey 135 1 1 3 1
Turkmenistan 53 0 0 0 3
Uganda 5 0 0 0 0
Ukraine 165 1 4 1 0
United Arab Emirates 0 0 0 0 0
United Kingdom 149 1 2 3 0
United States of America 227 6 0 0 0
Uruguay 29 0 0 0 2
Uzbekistan 81 0 0 1 3
Venezuela 3 0 0 0 0
Vietnam 177 2 4 0 0
Total (112 teams, 621 contestants) 52 94 156 144

N.B. Not all countries sent a full team of six students.
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